University of Trento, Department of Mathematics

Robert Nürnberg

Associate professor



Room No: 269
Telephone No: +39 0461 281619 (office)
E-mail: robert.nurnberg (at) unitn.it


Research interests


Organised events


Preprints

Publications

  1. H. Garcke, R. Nürnberg and Q. Zhao: Stable fully discrete finite element methods with BGN tangential motion for Willmore flow of planar curves, J. Sci. Comput. 105 (2025), 45.
  2. H. Garcke, R. Nürnberg, S. Praetorius and G. Zhang: Isoparametric finite element methods for mean curvature flow and surface diffusion, J. Comput. Phys. 539 (2025), 114248.
  3. K. Deckelnick and R. Nürnberg: Finite element schemes with tangential motion for fourth order geometric curve evolutions in arbitrary codimension, Numer. Math. 157 (2025), 1313--1346.
  4. H. Garcke, R. Nürnberg and Q. Zhao: A variational front-tracking method for multiphase flow with triple junctions, Math. Comp. (2025), to appear.
  5. H. Garcke, R. Nürnberg and D. Trautwein: Parametric finite element approximation of two-phase Navier--Stokes flow with viscoelasticity, IMA J. Numer. Anal. (2025), to appear.
  6. H. Garcke and R. Nürnberg: A finite element method for anisotropic crystal growth on surfaces, Int. J. Numer. Anal. Model. 22 (2025), 614--636.
  7. K. Deckelnick and R. Nürnberg: On the numerical approximation of hyperbolic mean curvature flows for surfaces, Comput. Methods Appl. Mech. Engrg. 437 (2025), 117800.
  8. K. Deckelnick and R. Nürnberg: Discrete anisotropic curve shortening flow in higher codimension, IMA J. Numer. Anal. 45 (2025), 36--67.
  9. H. Garcke, K. F. Lam, R. Nürnberg and A. Signori: Complex pattern formation governed by a Cahn--Hilliard--Swift--Hohenberg system: Analysis and numerical simulations, Math. Models Methods Appl. Sci., 34 (2024), 2055--2097.
  10. T. Eto, H. Garcke and R. Nürnberg: A structure-preserving finite element method for the multi-phase Mullins--Sekerka problem with triple junctions, Numer. Math. 156 (2024), 1479--1509.
  11. H. Garcke, R. Nürnberg and Q. Zhao: Arbitrary Lagrangian--Eulerian finite element approximations for axisymmetric two-phase flow, Comput. Math. Appl. 155 (2024), 209--223.
  12. K. Deckelnick and R. Nürnberg: A novel finite element approximation of anisotropic curve shortening flow, Interfaces Free Bound. 25 (2023), 671--708.
  13. H. Garcke, R. Nürnberg and Q. Zhao: Unfitted finite element methods for axisymmetric two-phase flow, J. Sci. Comput. 97 (2023), 14.
  14. K. Deckelnick and R. Nürnberg: Discrete hyperbolic curvature flow in the plane, SIAM J. Numer. Anal. 61 (2023), 1835--1857.
  15. R. Nürnberg: A structure preserving front tracking finite element method for the Mullins--Sekerka problem, J. Numer. Math. 31 (2023), 137--155.
  16. H. Garcke, R. Nürnberg and Q. Zhao: Structure-preserving discretizations of two-phase Navier--Stokes flow using fitted and unfitted approaches, J. Comput. Phys. 489 (2023), 112276.
  17. H. Garcke, K. F. Lam, R. Nürnberg and A. Signori: Phase field topology optimisation for 4D printing, ESAIM Control Optim. Calc. Var. 29 (2023), 24.
  18. H. Garcke, K. F. Lam, R. Nürnberg and A. Signori: Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies, Appl. Math. Optim. 87 (2023), 44.
  19. L. Carini, M. Jensen and R. Nürnberg: Deep learning for gradient flows using the Brezis--Ekeland principle, Arch. Math. (Brno) 59 (2023), 249--261.
  20. K. Deckelnick and R. Nürnberg: An unconditionally stable finite element scheme for anisotropic curve shortening flow, Arch. Math. (Brno) 59 (2023), 263--274.
  21. H. Garcke, P. Knopf, R. Nürnberg and Q. Zhao: A diffuse-interface approach for solid-state dewetting with anisotropic surface energies, J. Nonlinear Sci. 33 (2023), 34.
  22. W. Bao, H. Garcke, R. Nürnberg and Q. Zhao: A structure-preserving finite element approximation of surface diffusion for curve networks and surface clusters, Numer. Methods Partial Differential Equations 39 (2023), 759--794.
  23. W. Bao, H. Garcke, R. Nürnberg and Q. Zhao: Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations, J. Comput. Phys. 460 (2022), 111180.
  24. J. Eyles, R. Nürnberg and V. Styles: Finite element approximation of a phase field model for tumour growth, Port. Math. 78 (2021), 341--365.
  25. K. Deckelnick and R. Nürnberg: Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces, SIAM J. Numer. Anal. 59 (2021), 2698--2721.
  26. H. Garcke and R. Nürnberg: Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds, Numer. Math. 149 (2021), 375--415.
  27. M. Ebenbeck, H. Garcke and R. Nürnberg: Cahn--Hilliard--Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S. 14 (2021), 3989--4033.
  28. D. Antonopoulou, Ľ. Baňas, R. Nürnberg and A. Prohl: Numerical approximation of the stochastic Cahn--Hilliard equation near the sharp interface limit, Numer. Math. 147 (2021), 505--551.
  29. H. Garcke and R. Nürnberg: Structure-preserving discretizations of gradient flows for axisymmetric two-phase biomembranes, IMA J. Numer. Anal. 41 (2021), 1899--1940.
  30. J.W. Barrett, K. Deckelnick and R. Nürnberg: A finite element error analysis for axisymmetric mean curvature flow, IMA J. Numer. Anal. 41 (2021), 1641--1667.
  31. J.W. Barrett, H. Garcke and R. Nürnberg: Stable approximations for axisymmetric Willmore flow for closed and open surfaces, ESAIM Math. Model. Numer. Anal. 55 (2021), 833--885.
  32. M. Agnese and R. Nürnberg: Fitted front tracking methods for two-phase incompressible Navier--Stokes flow: Eulerian and ALE finite element discretizations, Int. J. Numer. Anal. Model. 17 (2020), 613--642.
  33. J.W. Barrett, H. Garcke and R. Nürnberg: Parametric finite element approximations of curvature driven interface evolutions, Handb. Numer. Anal. 21 (2020), 275--423. [arXiv]
  34. J.W. Barrett, H. Garcke and R. Nürnberg: Numerical approximation of curve evolutions in Riemannian manifolds, IMA J. Numer. Anal. 40 (2020), 1601--1651.
  35. J.W. Barrett, H. Garcke and R. Nürnberg: Stable discretizations of elastic flow in Riemannian manifolds, SIAM J. Numer. Anal. 57 (2019), 1987--2018.
  36. W. Dörfler and R. Nürnberg: Discrete gradient flows for general curvature energies, SIAM J. Sci. Comput. 41 (2019), 2012--2036.
  37. J.W. Barrett, H. Garcke and R. Nürnberg: Variational discretization of axisymmetric curvature flows, Numer. Math. 141 (2019), 791--837.
  38. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element methods for fourth order axisymmetric geometric evolution equations, J. Comput. Phys. 376 (2019), 733--766.
  39. J.W. Barrett, H. Garcke and R. Nürnberg: Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation, SMAI J. Comput. Math. 4 (2018), 151--195.
  40. H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka: A multiphase Cahn--Hilliard--Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci. 28 (2018), 525--577.
  41. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element approximation for the dynamics of fluidic two-phase biomembranes, ESAIM Math. Model. Numer. Anal. 51 (2017), 2319--2366.
  42. J.W. Barrett, H. Garcke and R. Nürnberg: Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature, IMA J. Numer. Anal. 37 (2017), 1657--1709.
  43. S. Aland, A. Hahn, C. Kahle and R. Nürnberg: Comparative simulations of Taylor flow with surfactants based on sharp- and diffuse-interface methods, in: Transport Processes at Fluidic Interfaces (D. Bothe and A. Reusken eds.), Birkhäuser (2017), 639--679.
  44. R. Nürnberg and E. Tucker: Stable finite element approximation of a Cahn--Hilliard--Stokes system coupled to an electric field, European J. Appl. Math. 28 (2017), 470--498.
  45. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element approximation for the dynamics of asymmetric fluidic biomembranes, Math. Comp. 86 (2017), 1037--1069.
  46. Ľ. Baňas and R. Nürnberg: Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow, ESAIM Math. Model. Numer. Anal. 51 (2017), 1089--1117.
  47. M. Agnese and R. Nürnberg: Fitted finite element discretization of two--phase Stokes flow, Internat. J. Numer. Methods Fluids 82 (2016), 709--729.
  48. J.W. Barrett, H. Garcke and R. Nürnberg: A stable numerical method for the dynamics of fluidic membranes, Numer. Math. 134 (2016), 783--822.
  49. J.W. Barrett, H. Garcke and R. Nürnberg: Computational parametric Willmore flow with spontaneous curvature and area difference elasticity effects, SIAM J. Numer. Anal. 54 (2016), 1732--1762.
  50. R. Nürnberg and A. Sacconi: A fitted finite element method for the numerical approximation of void electro-stress migration, Appl. Numer. Math. 104 (2016), 204--217.
  51. J.W. Barrett, H. Garcke and R. Nürnberg: Numerical computations of the dynamics of fluidic membranes and vesicles, Phys. Rev. E 92 (2015), 052704. [erratum]
  52. R. Nürnberg and E. Tucker: Finite element approximation of a phase field model arising in nanostructure patterning, Numer. Methods Partial Differential Equations 31 (2015), 1890--1924.
  53. J.W. Barrett, H. Garcke and R. Nürnberg: Stable numerical approximation of two-phase flow with a Boussinesq--Scriven surface fluid, Commun. Math. Sci. 13 (2015), 1829--1874.
  54. J.W. Barrett, H. Garcke and R. Nürnberg: Stable finite element approximations of two-phase flow with soluble surfactant, J. Comput. Phys. 297 (2015), 530--564.
  55. J.W. Barrett, H. Garcke and R. Nürnberg: On the stable numerical approximation of two-phase flow with insoluble surfactant, ESAIM Math. Model. Numer. Anal. 49 (2015), 421--458.
  56. J.W. Barrett, H. Garcke and R. Nürnberg: A stable parametric finite element discretization of two-phase Navier--Stokes flow, J. Sci. Comput. 63 (2015), 78--117.
  57. R. Nürnberg and A. Sacconi: An unfitted finite element method for the numerical approximation of void electromigration, J. Comput. Appl. Math. 270 (2014), 531--544.
  58. J.W. Barrett, H. Garcke and R. Nürnberg: Phase field models versus parametric front tracking methods: Are they accurate and computationally efficient?, Commun. Comput. Phys. 15 (2014), 506--555. [arXiv]
  59. J.W. Barrett, H. Garcke and R. Nürnberg: Stable phase field approximations of anisotropic solidification, IMA J. Numer. Anal. 34 (2014), 1289--1327.
  60. J.W. Barrett, H. Garcke and R. Nürnberg: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow, Comput. Methods Appl. Mech. Engrg. 267 (2013), 511--530.
  61. J.W. Barrett, H. Garcke and R. Nürnberg: On the stable discretization of strongly anisotropic phase field models with applications to crystal growth, ZAMM Z. Angew. Math. Mech. 93 (2013), 719--732.
  62. C. Rascon, A.O. Parry, R. Nürnberg, A. Pozzato, M. Tormen, L. Bruschi, G. Mistura: The order of condensation in capillary grooves, J. Phys.: Condens. Matter 25 (2013), 192101.
  63. Ľ. Baňas, A. Novick-Cohen and R. Nürnberg: The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison, Netw. Heterog. Media 8 (2013), 37--64.
  64. J.W. Barrett, H. Garcke and R. Nürnberg: Finite-element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs--Thomson law, Adv. Differential Equations 18 (2013), 383--432. [arXiv]
  65. J.W. Barrett, H. Garcke and R. Nürnberg: Numerical computations of faceted pattern formation in snow crystal growth, Phys. Rev. E 86 (2012), 011604. [arXiv, Scientific American]
  66. J.W. Barrett, H. Garcke and R. Nürnberg: Elastic flow with junctions: Variational approximation and applications to nonlinear splines, Math. Models Methods Appl. Sci. 22 (2012), 1250037.
  67. J.W. Barrett, H. Garcke and R. Nürnberg: Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves, Numer. Math. 120 (2012), 489--542.
  68. J.W. Barrett, H. Garcke and R. Nürnberg: The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute, Numer. Methods Partial Differential Equations 27 (2011), 1--30.
  69. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element approximation of coupled surface and grain boundary motion with applications to thermal grooving and sintering, European J. Appl. Math. 21 (2010), 519--556.
  70. J.W. Barrett, H. Garcke and R. Nürnberg: On stable parametric finite element methods for the Stefan problem and the Mullins--Sekerka problem with applications to dendritic growth, J. Comput. Phys. 229 (2010), 6270--6299.
  71. J.W. Barrett, H. Garcke and R. Nürnberg: Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies, Interfaces Free Bound. 12 (2010), 187--234.
  72. J.W. Barrett, H. Garcke and R. Nürnberg: Numerical approximation of gradient flows for closed curves in R^d, IMA J. Numer. Anal. 30 (2010), 4--60.
  73. Ľ. Baňas and R. Nürnberg: A posteriori estimates for the Cahn--Hilliard equation with obstacle free energy, ESAIM Math. Model. Numer. Anal. 43 (2009), 1003--1026.
  74. Ľ. Baňas and R. Nürnberg: A multigrid method for the Cahn--Hilliard equation with obstacle potential, Appl. Math. Comput. 213 (2009), 290--303.
  75. R. Nürnberg: Numerical simulations of immiscible fluid clusters, Appl. Numer. Math. 59 (2009), 1612--1628.
  76. Ľ. Baňas and R. Nürnberg: Phase field computations for surface diffusion and void electromigration in R^3, Comput. Vis. Sci. 12 (2009), 319--327.
  77. J.W. Barrett, H. Garcke and R. Nürnberg: Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput. 31 (2008), 225--253.
  78. Ľ. Baňas and R. Nürnberg: Finite element approximation of a three dimensional phase field model for void electromigration, J. Sci. Comput. 37 (2008), 202--232.
  79. J.W. Barrett, H. Garcke and R. Nürnberg: A variational formulation of anisotropic geometric evolution equations in higher dimensions, Numer. Math. 109 (2008), 1--44.
  80. J.W. Barrett, H. Garcke and R. Nürnberg: On the parametric finite element approximation of evolving hypersurfaces in R^3, J. Comput. Phys. 227 (2008), 4281--4307.
  81. Ľ. Baňas and R. Nürnberg: Adaptive finite element methods for Cahn--Hilliard equations, J. Comp. Appl. Math. 218 (2008), 2--11.
  82. J.W. Barrett, H. Garcke and R. Nürnberg: Numerical approximation of anisotropic geometric evolution equations in the plane, IMA J. Numer. Anal. 28 (2008), 292--330.
  83. J.W. Barrett, H. Garcke and R. Nürnberg: On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities, Discrete Contin. Dyn. Syst. Ser. S. 1 (2008), 1--14.
  84. H. Garcke, R. Nürnberg and V. Styles: Stress- and diffusion-induced interface motion: Modelling and numerical simulations, European J. Appl. Math. 18 (2007), 631--657.
  85. J.W. Barrett, H. Garcke and R. Nürnberg: On the variational approximation of combined second and fourth order geometric evolution equations, SIAM J. Sci. Comput. 29 (2007), 1006--1041.
  86. J.W. Barrett, H. Garcke and R. Nürnberg: A phase field model for the electromigration of intergranular voids, Interfaces Free Bound. 9 (2007), 171--210.
  87. J.W. Barrett, H. Garcke and R. Nürnberg: A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys. 222 (2007), 441--467.
  88. J.W. Barrett, R. Nürnberg and M.R.E. Warner: Finite element approximation of soluble surfactant spreading on a thin film, SIAM J. Numer. Anal. 44 (2006), 1218--1247.
  89. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid, Math. Comp. 75 (2006), 7--41.
  90. J.W. Barrett and R. Nürnberg: Finite element approximation of a Stefan problem with degenerate Joule heating, ESAIM Math. Model. Numer. Anal. 38 (2004), 633--652.
  91. J.W. Barrett, R. Nürnberg and V. Styles: Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal. 42 (2004), 738--772.
  92. J.W. Barrett and R. Nürnberg: Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces, IMA J. Numer. Anal. 24 (2004), 323--363.
  93. J.W. Barrett, S. Langdon and R. Nürnberg: Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math. 96 (2004), 401--434.
  94. J.W. Barrett, H. Garcke and R. Nürnberg: Finite element approximation of surfactant spreading on a thin film, SIAM J. Numer. Anal. 41 (2003), 1427--1464.
  95. M.P. Nowak, R. Nürnberg, W. Römisch, R. Schultz and M. Westphalen: Stochastic programming for power production and trading under uncertainty, in: Mathematics -- Key Technology for the Future (W. Jäger and H.-J. Krebs eds.), Springer (2003), 623--636.
  96. J.W. Barrett and R. Nürnberg: Finite element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation, Interfaces Free Bound. 4 (2002), 277--307.
  97. R. Nürnberg and W. Römisch: A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty, Optim. Eng. 3 (2002), 355--378.


Selected Talks



Former PhD Students



Miscellaneous


Robert Nürnberg
[Google Scholar, Web of Science, Scopus, MathSciNet, zbMATH]
Last changed on 26/09/2025