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T := 
� (0; T ); 
 � Rd; d � 2;�v�t �r:(b(u; v)rv) = �f(u) v in 
Tsubjet to no ux boundary onditions, and non-negative initial data u0 and v0 onu and v. Here we assume that  > 0, � � 0 and that f(r) � f(0) = 0 is Lipshitzontinuous and monotonially inreasing for r 2 [0; supx2
 u0(x)℄. Throughout thepaper we restrit ourselves to the model degenerate ase b(u; v) := � u v, where� > 0. The above models the spatiotemporal evolution of a baterium on a thin�lm of nutrient, where u is the nutrient onentration and v is the baterial elldensity. In addition to showing stability bounds for our approximation, we proveonvergene and hene existene of a solution to this nonlinear degenerate parabolisystem. Finally, some numerial experiments in one and two spae dimensions arepresented.Mathematis Subjet Classi�ation (2000): 35K50, 35K55, 35K57, 35K65, 65M12,65M60, 92C151 IntrodutionWe onsider the initial boundary value problem(P) Find funtions u; v : 
� [0; T ℄! R�0 suh that�u�t � �u = �g(u; v) in 
T := 
� (0; T ); (1.1a)�v�t �r:(b(u; v)rv) = � g(u; v) in 
T (1.1b)u(x; 0) = u0(x) � 0; v(x; 0) = v0(x) � 0 8 x 2 
; (1.1)�u�� = b(u; v) �v�� = 0 on �
� (0; T ); (1.1d)1



where 
 is a bounded domain in Rd; d � 2, with a Lipshitz boundary �
, � is normalto �
 and T > 0 is a �xed positive time. A system of the type (P) was proposedin Kawasaki et al. (1997) as a model for the spatiotemporal evolution of a bateriumon a thin �lm of nutrient, where u is the nutrient onentration and v is the baterialell density. The di�usion oeÆients of the nutrient and baterial ells are  > 0 andb(�; �) � 0, respetively. Throughout the paper, we will restrit ourselves to the modelase: b(r; s) := � r s; where � > 0 ; (1.2)that is, b(r; s) degenerates if either r or s = 0. The term g(�; �) � 0 represents theonsumption rate of nutrient by the ells; while �g(�; �) is the growth rate of bateria,where � � 0 is the onversion rate of onsumed nutrient to baterial growth. We assumethroughout that g(�; �) is monotonially inreasing in both arguments. More preisely weassume that g(�; �) 2 C(R�0 �R�0) satis�esg(r2; s) � g(r1; s) � g(0; s) = 0 8 r2 � r1 � 0; s � 0 ;g(r; s2) � g(r; s1) � 0 8 r � 0; s2 � s1 � 0 : (1.3)The degeneray in both arguments of b(�; �) makes the analysis of this system partiu-larly diÆult. In fat we are unaware of any existene proof or any numerial analysis workon suh a system, even though there is a great deal of interest in the degenerate system(P) in the mathematial/theoretial biology ommunity, see e.g. Golding et al. (1998),Mimura et al. (2000) and the referenes therein. Related models desribing baterialpattern formation are also disussed in these review papers. In this paper we proposeand analyse a fully pratial �nite element approximation of (P) and as a onsequene weprove existene of a weak solution. For the stability bounds on this approximation, wewill restrit ourselves tog(r; s) := f(r) s; where f(�) 2 C(R�0) and f(r2) � f(r1) � f(0) = 0 8 r2 � r1 � 0 ;(1.4)that is, g(r; s) has linear growth in s. For our main onvergene result, we will furtherassume that f(r) is Lipshitz ontinuous for r 2 [0; supx2
 u0(x)℄, see (3.18) below. In anyase, all of our assumptions on b(�; �) and g(�; �) inlude the models proposed in Kawasakiet al. (1997): (1.2) with either Mihaelis-Menten kinetis, g(r; s) := � r s = (1+  r), or itsbilinear approximation, g(r; s) := � r s; where �;  > 0.In analysing our approximation of (P) we will adapt some of the tehniques used byDekelnik et al. (2001); where they prove onvergene, in two spae dimensions, of a�nite element approximation of the following phase �eld model for di�usion indued grainmotion: Find funtions u : 
T ! [�1; 1℄ and v : 
T ! R suh that�u�t � �u� � u+ � v + �I[�1;1℄(u) 3 0 in 
T ; (1.5a)�v�t = r:(D(u)rv) in 
T ; (1.5b)where �I[�1;1℄ is the subdi�erential of I[�1;1℄, the indiator funtion of the set [�1; 1℄,D(r) := � (1� r2) and �; ; �; � > 0. The system (1.5a,b) is supplemented by initial and2



ux boundary onditions for u and v. Here (1.5a) is a double obstale Allen-Cahn equationwith a foring obtained from the solution of the degenerate di�usion equation (1.5b).One an learly see similarities between (1.1a,b) and (1.5a,b). However, the degenerayin (1.1b) is harder to deal with as b(�; �) degenerates with respet to both arguments.A double degeneray of the type ourring in (P) has been onsidered, for example,in Barrett and Blowey (2001); where they prove onvergene, in one spae dimension,of a �nite element approximation of the following degenerate Allen-Cahn/Cahn-Hilliardsystem: Find funtions u; v; w; z : 
T ! R suh that�u�t = r: (D(u; v)rw) in 
T ; (1.6a)� �v�t = �D(u; v) z in 
T ; (1.6b)w = ��u+ � [�(u+ v) + �(u� v) ℄� � u in 
T ; (1.6)z = ��v + � [�(u+ v)� �(u� v) ℄� � v in 
T ; (1.6d)where �(r) := ln r � ln (1 � r), D(r; s) := � r (1 � r) (1 � 4s2) and �; ; �; �; �; � > 0.The system (1.6a{d) is supplemented by initial onditions for u; v and no ux boundaryonditions for u; v; w. Substituting (1.6,d) into (1.6a,b), respetively, the above systemonsists of a degenerate fourth order equation oupled to a degenerate seond order equa-tion. In some ways (1.6a{d) is more diÆult than the degenerate system (P) as (a) bothequations are degenerate, (b) � is a singular nonlinearity foring (u � v)(x; t) 2 (0; 1).However, the struture of the system (1.6a{d) allows one to prove the following uniformboundskUkL1(0;T ;H1(
)) + kV kL1(0;T ;H1(
)) + k�U�t kL2(0;T ;(H1(
))0) + k�V�t kL2(
T ) � C (1.7)for a solution fU; V gh of an appropriate �nite element approximation, where h is thedisretization parameter. In one spae dimension, on noting the ompat embeddingH1(
) ,! C(
) and (1.14b) below, the bounds (1.7) give rise to the uniform subsequeneonvergene U ! u, V ! v on 
T as h! 0. This uniform onvergene plays an essentialrole and hene the restrition to one spae dimension, d = 1, in Barrett and Blowey(2001). Unfortunately, the bounds on V in (1.7) do not hold for an approximation of (P).Hene the approah in Barrett and Blowey (2001) is not appropriate for (P), even ford = 1. As stated above, in this paper we adapt the tehniques in Dekelnik et al. (2001)to prove onvergene of our �nite element approximation of (P) for d � 2. To ahievethis, we use a speial disretization of b(�; �) in our �nite element approximation thatenables us to prove a key a priori bound. This approah is based on an idea introdued inZhornitskaya and Bertozzi (2000) and Gr�un and Rumpf (2000) for the thin �lm equation:Find u : 
T ! R suh that�u�t +r: (jujpr�u) = 0 in 
T ; (1.8)where p > 0. We now motivate this tehnique for (P). On assuming (1.2) and (1.4), it iseasy to establish L1(
T ) bounds on u; v for (P); see Setion 2 below for suh bounds onthe �nite element approximation of (P). Then testing a weak formulation of (1.1b) withv yields that � Z
T u v jrvj2 dx dt � 12 kv0k2L2(
) + � Z
T f(u) v2 dx dt � C : (1.9)3



The above bound only ontrols v jrvj2, and hene jr(v2)j2, where u > 0. However, if wede�ne a funtion L(�) suh that�r[L0(�)℄ = r� =) L00(s) = s�1 ) L(s) = s(ln s� 1) + 1 ; (1.10)then testing (1.1b) with L0(v) yields that� Z
T u jrvj2 dx dt � Z
L(v0) dx+ � Z
T f(u)L0(v) v dx dt � C : (1.11)This bound ontrols jrvj2 where u > 0. The disrete analogue of (1.11) will play a keyrole in the onvergene analysis in Setion 3. To obtain suh a bound we require a disreteanalogue of (1.10) and hene the speial approximation of b(�; �).This paper is organised as follows. In Setion 2 we formulate a fully pratial �niteelement approximation of problem (P) and derive stability bounds. In Setion 3 we proveonvergene of this approximation to a weak solution of (P), in spae dimensions d � 2,and hene we prove existene of a solution to (P). In Setion 4 we state an iterative shemefor solving the nonlinear disrete system at eah time level and present some numerialomputations in both one and two spae dimensions.Notation and Auxiliary ResultsWe adopt the standard notation for Sobolev spaes, denoting the norm of Wm;q(
) (m 2N, q 2 [1;1℄) by k�km;q and the semi-norm by j � jm;q. For q = 2, Wm;2(
) will be denotedby Hm(
) with the assoiated norm and semi-norm written as, respetively, k � km andj�jm. We introdue also (Wm;q(
))0 and (Hm(
))0 the dual spaes ofWm;q(
) and Hm(
),respetively, and denote the norm of (Hm(
))0 by k � k�m. Throughout (�; �) will denotethe standard L2 inner produt over 
. In addition we de�neR� � := 1m(
)(�; 1) 8 � 2 L1(
); where m(
) is the measure of 
 : (1.12)For later purposes, we reall the following well-known Sobolev interpolation result, seee.g. Adams and Fournier (1977): Let q 2 [1;1℄, m � 1,r 2 8><>:[q;1℄ if m� dq > 0;[q;1) if m� dq = 0;[q;� dm�(d=q) ℄ if m� dq < 0;and � = dm � 1q � 1r�. Then there is a onstant C depending only on 
; q; r;m suh thatfor all z 2 Wm;q(
) the inequalityjzj0;r � C jzj1��0;q kzk�m;q (1.13)4



holds. We reall also the following ompatness results. Let X, Y and Z be Banahspaes with a ompat embedding X ,! Y and a ontinuous embedding Y ,! Z. Thenthe embeddings f � 2 L2(0; T ;X) : ���t 2 L2(0; T ;Z) g ,! L2(0; T ;Y ) (1.14a)and f � 2 L1(0; T ;X) : ���t 2 L2(0; T ;Z) g ,! C([0; T ℄;Y ) (1.14b)are ompat, see Simon (1987). We note also for future referene Young's inequalityr s � 2 r2 + 12 s2 8 r; s 2 R;  2 R>0 ; (1.15)and the elementary identity2 r (r � s) = (r2 � s2) + (r � s)2 8 r; s 2 R : (1.16)Throughout C denotes a generi onstant independent of h, � and "; the mesh and tempo-ral disretization parameters and the regularization parameter. In addition C(a1; � � �; aI)denotes a onstant depending on the nonnegative parameters faigIi=1 suh that if ai � Cfor i = 1; : : : ; I, then C(a1; � � �; aI) � C.2 Finite Element ApproximationWe onsider the �nite element approximation of (P) at �rst under the following assump-tions on the mesh:(A) Let 
 be a polygonal domain if d = 2. Let fT hgh>0 be a quasi-uniform familyof partitionings of 
 into disjoint open simplies � with h� := diam(�) and h :=max�2T h h�, so that 
 = [�2T h�. In addition, it is assumed for d = 2 that allsimplies � 2 T h are right-angled.We note that the quasi-uniformity assumption an be avoided at the expense of a mildonstraint on the minimum time step, see Remark 3.1 below. Furthermore we note thatthe right-angled simplies assumption is not a severe onstraint, as there exist adaptive�nite element odes that satisfy this requirement, see e.g. Shmidt and Siebert (2000).Assoiated with T h is the �nite element spaeSh := f� 2 C(
) : � j� is linear 8 � 2 T hg � H1(
):We introdue alsoKh := f� 2 Sh : � � 0 in 
g � K := f� 2 H1(
) : � � 0 a:e: in 
g:Let J be the set of nodes of T h and fpjgj2J the oordinates of these nodes. Let J := #Jand f�jgj2J be the standard basis funtions for Sh; that is �j 2 Kh and �j(pi) = Æij for all5



i; j 2 J . The right angle onstraint on the partitioning is required for our approximationof b(�; �), see (2.6a,b) below, but one onsequene is thatZ�r�i :r�j dx � 0 i 6= j; 8 � 2 T h: (2.1)We introdue �h : C(
)! Sh, the interpolation operator, suh that �h�(pj) = �(pj) forall j 2 J . A disrete inner produt on C(
) is then de�ned by(�1; �2)h := Z
 �h(�1(x) �2(x)) dx �Xj2J mj �1(pj) �2(pj); (2.2)where mj := (1; �j) > 0. We introdue the L2 projetion Qh : L2(
)! Sh de�ned by(Qh�; �)h = (�; �) 8 � 2 Sh: (2.3)For omputational purposes, we replae L 2 C1(R>0), see (1.10), for any " 2 (0; 1)by the regularized funtion L" : R! R�0 suh thatL"(s) := ( s2�"22 " + (ln "� 1) s+ 1 s � "s (ln s� 1) + 1 " � s : (2.4)Hene L" 2 C2;1(R) with the �rst two derivatives of L" given byL0"(s) := ( "�1 s+ ln "� 1 s � "ln s " � s and L00"(s) := ( "�1 s � "s�1 " � s ; (2.5)respetively. Similarly to the approah in Zhornitskaya and Bertozzi (2000) and Gr�unand Rumpf (2000), we introdue �" : Sh ! [L1(
)℄d�d suh that for all zh 2 Sh and a:e:in 
 �"(zh) is symmetri and positive semide�nite; (2.6a)�"(zh)r�h[L0"(zh)℄ = rzh ; (2.6b)that is, the disrete analogue of (1.10). Firstly, we give the onstrution of �" in thesimple ase when d = 1. Given zh 2 Sh and � 2 T h having verties pj and pk, we set�"(zh) j�:= 8>>>><>>>>: zh(pk)� zh(pj)L0"(zh(pk))� L0"(zh(pj)) = 1L00"(zh(�))for some � between pk and pj if zh(pk) 6= zh(pj);1L00"(zh(pk)) if zh(pk) = zh(pj):(2.7)Clearly the pieewise onstant onstrution in (2.7) satis�es the onditions (2.6a,b). Fol-lowing Gr�un and Rumpf (2000) we extend the above onstrution to d = 2. Let feigdi=1be the orthonormal vetors in Rd, suh that the jth omponent of ei is Æij, i; j = 1; : : : ; d.6



Given non-zero onstants �i, i = 1; : : : ; d; let b�(f�igdi=1) be the referene open sim-plex in Rd with verties fbpigdi=0, where bp0 is the origin and bpi = �iei, i = 1; : : : ; d.Given a � 2 T h with verties fpjigdi=0, suh that pj0 is the right-angled vertex, thenthere exists a rotation matrix R� and non-zero onstants f�igdi=1 suh that the mappingR� : bx 2 Rd ! pj0 + R�bx 2 Rd maps the vertex bpi to pji, i = 0; : : : ; d, and heneb� � b�(f�igdi=1) to �. For any zh 2 Sh, we then set�"(zh) j�:= R� b�"(bzh) jb� RT� ; (2.8)where bzh(bx) � zh(R�bx) for all bx 2 b� and b�"(bzh) jb� is the d � d diagonal matrix withdiagonal entries, k = 1; : : : ; d,
[b�"(bzh)℄kk jb�:= 8>>>>>>>>><>>>>>>>>>:

bzh(bpk)� bzh(bp0)L0"(bzh(bpk))� L0"(bzh(bp0)) � zh(pjk)� zh(pj0)L0"(zh(pjk))� L0"(zh(pj0))= 1L00"(zh(�)) for some � between pjk and pj0if zh(pjk) 6= zh(pj0);1L00"(bzh(bp0)) � 1L00"(zh(pj0)) if zh(pjk) = zh(pj0):(2.9)As RT� � R�1� , rzh � R� brbzh, where x � (x1; � � �; xd)T , r � ( ��x1 ; � � �; ��xd )T , bx �(bx1; � � �; bxd)T and br � ( ��bx1 ; � � �; ��bxd )T , it easily follows that �"(zh) onstruted in (2.8)and (2.9) satis�es (2.6a,b). It is this onstrution that requires the right angle onstrainton the partitioning T h. We note also for future referene thatZb� �b�j�bxi �b�k�bxi dbx � 0 j 6= k; i = 1; : : : ; d; 8 � 2 T h: (2.10)For the purposes of the analysis it is onvenient to extend the domain of g(�; �) toR�R by settingg(r; s) = 0 8 r � 0; 8 s 2 R and g(r; s) = g(r; 0) 8 s � 0; 8 r 2 R : (2.11)In addition to T h, let 0 � t0 < t1 < : : : < tN�1 < tN � T be a partitioning of [0; T ℄into possibly variable time steps �n := tn � tn�1, n = 1; : : : ; N . We set � := maxn=1;:::;N �n.For any given " 2 (0; 1), we then onsider the following fully pratial �nite elementapproximation of (P) with b(�; �) as in (1.2):(Ph;�" ) For n � 1, �nd fUn" ; V n" g 2 Sh � Sh suh that�Un" �Un�1"�n ; ��h +  (rUn" ;r�) + (g(Un" ; V n�1" ); �)h = 0 8 � 2 Sh; (2.12a)�V n" �V n�1"�n ; ��h + � (Un" �"(V n" )rV n" ;r�) = � (g(Un" ; V n�1" ); �)h 8 � 2 Sh; (2.12b)where U0" ; V 0" 2 Kh are approximations of u0; v0 � 0, respetively, e.g. U0" � �hu0 orQhu0 and similarly V 0" . In fat, it is a simple matter to dedue that a solution of (Ph;�" )is suh that fUn" ; V n" g 2 Kh �Kh, n = 1; : : : ; N , see (2.40a,b) below.7



Below we reall some well-known results onerning Sh for m = 0 or 1:j�j1;� � C h�1� j�j0;� 8 � 2 Sh ; 8 � 2 T h ; (2.13)j(I � �h)�jm � C h2�m j�j2 8 � 2 H2(
) ; (2.14)j(I � �h)�jm � C h1�m j�j1 8 � 2 H1(
) ; if d = 1 ; (2.15)j(I � �h)f(�)j0 � C h j�h[f(�)℄j1 8 � 2 Kh ; (2.16)and j�j0 � j�jh := [(�; �)h℄ 12 � (d+ 2) 12 j�j0 8 � 2 Sh ; (2.17)j(zh; �)� (zh; �)hj � j(I � �h)(zh �)j0;1 � Ch1+m jzhjm j�j1 8 zh; � 2 Sh ; (2.18)It follows from (2.3) that(Qh�)(xj) � (�; �j)(1; �j) 8 j 2 J =) kQh�k0;1 � k�k0;1 8 � 2 L1(
): (2.19)Finally, as we have a quasi-uniform family of partitionings, it holds for m = 0 or 1 thatj(I �Qh)�jm � C h1�m k�k1 8 � 2 H1(
) : (2.20)We require the following results onerning �"(�).Lemma. 2.1. Let the assumptions (A) hold and let k�k denote the spetral norm on Rd�d.Then for any given " 2 (0; 1) the funtion �" : Sh ! [L1(
)℄d�d satis�es" �T� � �T�"(zh)� � max("; kzhk0;1) �T � 8 � 2 Rd 8 zh 2 Sh (2.21)and is ontinuous. In partiular it holds for all zh1 , zh2 2 Sh, � 2 T h thatk[�"(zh1 )� �"(zh2 )℄ j� k = k[b�"(bzh1 )� b�"(bzh2 )℄ jb� k� "�1 max("; kzh1k0;1; kzh2k0;1) maxk=1;:::;d � jzh1 (pjk)� zh2 (pjk)j+ jzh1 (pj0)� zh2 (pj0)j � ;(2.22)where we have adopted the notation (2.8) and (2.9).Proof. (2.21) follows immediately from (2.8), (2.9) and (2.5). The equality in (2.22)follows immediately from (2.8). Adopting the notation (2.8) and (2.9) we have thatk[b�"(bzh1 )� b�"(bzh2 )℄ jb� k = maxk=1;:::;d ���h[b�"(bzh1 )℄kk � [b�"(bzh2 )℄kki jb���� (2.23a)and ���h[b�"(bzh1 )℄kk � [b�"(bzh2 )℄kki jb����� ���h[b�"(bzh1 )℄kk � [b�"(bzh1;2)℄kki jb����+ ���h[b�"(bzh1;2)℄kk � [b�"(bzh2 )℄kki jb����= ���� 1L00"(�1) � 1L00"(�)����+ ���� 1L00"(�) � 1L00"(�2) ���� ; (2.23b)8



where zh1;2 2 Sh with zh1;2(pj0) = zh2 (pj0) and zh1;2(pjk) = zh1 (pjk), �i lies between zhi (pj0)and zhi (pjk), i = 1; 2, and � lies between zh1 (pjk) and zh2 (pj0).We now show that���� 1L00"(�1) � 1L00"(�)���� � "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j ; (2.24)for zh1 (pj0) 6= zh2 (pj0). If zh1 (pj0) = zh2 (pj0), then � = �1 and (2.24) is trivially true.Otherwise let , lying between zh1 (pj0) and zh2 (pj0), be suh that1L00"() = zh2 (pj0)� zh1 (pj0)L0"(zh2 (pj0))� L0"(zh1 (pj0))and so[zh2 (pj0)� zh1 (pj0)℄L00"() = [zh2 (pj0)� zh1 (pjk)℄L00"(�) + [zh1 (pjk)� zh1 (pj0)℄L00"(�1) : (2.25)It holds that either(i) jzh1 (pjk)� zh1 (pj0)j+ jzh1 (pjk)� zh2 (pj0)j = jzh1 (pj0)� zh2 (pj0)j (2.26a)or (ii) jzh1 (pj0)� zh2 (pj0)j+ jzh1 (pjk)� zh2 (pj0)j = jzh1 (pjk)� zh1 (pj0)j (2.26b)or (iii) jzh1 (pjk)� zh1 (pj0)j+ jzh1 (pj0)� zh2 (pj0)j = jzh1 (pjk)� zh2 (pj0)j : (2.26)In ase (i) we have on noting L00"(s) = [max(s; ")℄�1 that���� 1L00"(�1) � 1L00"(�)���� � j�1 � �j � jzh1 (pj0)� zh2 (pj0)j : (2.27)For ase (ii) it follows from (2.25) that(zh1 (pjk)� zh1 (pj0)) � 1L00"(�) � 1L00"(�1)� = (zh2 (pj0)� zh1 (pj0)) L00"()L00"(�1) � 1L00"(�) � 1L00"()� ;and hene we have that���� 1L00"(�1) � 1L00"(�)���� � L00"()L00"(�1) j� � jjzh1 (pjk)� zh1 (pj0)j jzh1 (pj0)� zh2 (pj0)j� "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j : (2.28)For ase (iii) we proeed similarly to end up with���� 1L00"(�1) � 1L00"(�)���� � L00"()L00"(�) j�1 � jjzh1 (pjk)� zh2 (pj0)j jzh1 (pj0)� zh2 (pj0)j� "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j : (2.29)Hene, ombining (2.26a{){(2.29), we have shown the desired result (2.24). In a similarway we �nd that���� 1L00"(�2) � 1L00"(�)���� � "�1 max("; jzh1 (pjk)j; jzh2 (pjk)j) jzh1 (pjk)� zh2 (pjk)j : (2.30)Combining (2.23a,b), (2.24) and (2.30) yields the desired result (2.22). ut9



Remark. 2.1. The bound (2.22) is not pessimisti. For example, onsider d = 1,zh2 (pj0) = ", zh1 (pj1) = zh2 (pj1) = 1 and zh1 (pj0) = "+  with  2 (0; 1� "). Then[�"(zh1 )� �"(zh2 )℄ j(pj0 ;pj1) = 1� "ln " � 1� ("+ )ln("+ ) = (1� ") ln(1 + "�1) +  ln "ln("+ ) ln "� (ln ")�2"�1 for  � "� 1 :For any " 2 (0; 1), let �" 2 C0;1(R) be suh that�"(s) := [s� "℄+ + " 8 s 2 R; where [s℄+ := maxfs; 0g;=) �"(s)� s 2 [0; "℄ 8 s 2 R�0: (2.31)Lemma. 2.2. Let the assumptions (A) hold. Then for any given " 2 (0; 1) the funtion�" : Sh ! [L1(
)℄d�d is suh that for all zh 2 Sh and � 2 T hmaxx2� kf�"(zh)� �h[�"(zh)℄ Ig(x)k � h� jr�h[�"(zh)℄ j� j; (2.32)where I is the d� d identity matrix.Proof. Adopting the notation of (2.8), we have from (2.9) and (2.5) thatmaxx2� kf�"(zh)� �h[�"(zh)℄ Ig(x)k2 = maxbx2b� kfb�"(bzh)� b�h[�"(bzh)℄ Ig(bx)k2= maxbx2b� � maxk=1;:::;d j [b�"(bzh)℄kk � b�h[�"(bzh)℄(bx) j2�� h2� jbrb�h[�"(bzh)℄ jb� j2 = h2� jr�h[�"(zh)℄ j� j2;where we have noted that [b�"(bzh)℄kk = b�h[�"(bzh)℄(b�(k)) � �h[�"(zh)℄(�(k)) with �(k) �R�b�(k) 2 � for some point b�(k) 2 b�. Hene we obtain the desired result (2.32). utIn order to derive upper and lower bounds on fUn" ; V n" gNn=1 we formulate the followingsalar problems.(P �M) For n � 1, let fUnM ;VnMg 2 R�0 �R�0 be suh thatUnM�Un�1M�n + g(UnM ;Vn�1m ) = 0; (2.33a)VnM�Vn�1M�n = � g(UnM ;Vn�1M ); (2.33b)(P �m) For n � 1, let fUnm;Vnmg 2 R�0 �R�0 be suh thatUnm�Un�1m�n + g(Unm;Vn�1M ) = 0; (2.34a)Vnm�Vn�1m�n = � g(Unm;Vn�1m ); (2.34b)where U0M ; U0m; V0M ; V0m 2 R�0 are suh that for all h > 0 and for all " 2 (0; 1)U0M � U0" (x) � U0m and V0M � V 0" (x) � V0m 8 x 2 
 : (2.35)10



Lemma. 2.3. Let the assumptions (1.3) on g(�; �) hold. Let U0M ; U0m; V0M ; V0m satisfy(2.35). Then for all time partitions f�ngNn=1, there exists a unique solution fUnm; Vnm; UnM ;VnMgNn=1 to (P �m) and (P �M), respetively. Furthermore, it holds for all n � 1 thatUn�1M � UnM � Unm and Un�1m � Unm � 0 ; (2.36a)VnM � Vn�1M and VnM � Vnm � Vn�1m � 0 : (2.36b)Proof. We proeed by indution. LetUn�1M � Un�1m � 0 and Vn�1M � Vn�1m � 0; (2.37)whih is true for n = 1 on noting (2.35). Existene and uniqueness of UnM ; VnM ; Unm; Vnmsolving (2.33a,b) and (2.34a,b) follow immediately from our assumptions (1.3) on g(�; �).Moreover, it follows from (2.37), (2.33a), (2.34a) and (1.3) thatUnM + �n g(UnM ;Vn�1m ) = Un�1M � Un�1m = Unm + �n g(Unm;Vn�1M )� Unm + �n g(Unm;Vn�1m ) ; (2.38)and hene the desired result (2.36a). It follows from (2.37), (2.33b), (2.34b), (2.36a) and(1.3) that VnM = Vn�1M + �n � g(UnM ;Vn�1M ) � Vn�1m + �n � g(Unm;Vn�1m ) = Vnm ; (2.39)and hene the desired result (2.36b). Therefore by indution the results (2.36a,b) holdfor all n � 1. utTheorem. 2.1. Let the assumptions (A) hold, g(�; �) satisfy (1.3), and Un�1" ; V n�1" 2 Kh.Then for all " 2 (0; 1) and for all h, �n > 0 there exists a solution fUn" ; V n" g 2 Kh �Khto the n-th step of (Ph;�" ). Furthermore Un" is unique.Hene for all " 2 (0; 1), h > 0 and for all time partitions f�ngNn=1, there exists asolution fUn" ; V n" gNn=1 of (Ph;�" ). In addition if U0M ; U0m; V0M ; V0m satisfy (2.35), then itfollows that for all n � 0U0M � UnM � Un" (x) � Unm � 0 8 x 2 
; (2.40a)VnM � V n" (x) � Vnm � V0m � 0 8 x 2 
 (2.40b)and (� Un" + V n" ; 1)h = (� U0" + V 0" ; 1)h : (2.41)Proof. For any W �Pj2J Wj �j 2 Sh we de�ne W := (W1; � � �;WJ )T 2 RJ . We thenintrodue F nU : RJ �RJ ! RJ de�ned by[F nU (W;Z)℄j := (W;�j)h + �n  (rW;r�j) + �n (g(W;Z); �j)h 8 j 2 J : (2.42)11



On noting (2.1), (1.3) and (2.11), it follows for every �xed Z 2 RJ that F nU (W;Z) anbe written as AW +'(W ) with A 2 RJ�J being anM-matrix and ' : RJ ! RJ beinga ontinuous isotone diagonal mapping. Hene for every �xed Z 2 RJ , we have thatF nU (�; Z) : RJ ! RJ is an inverse isotone homeomorphism; (2.43)see e.g. Ortega and Rheinboldt (1970, x13.5.6)Given Un�1" ; V n�1" 2 Kh, and hene Un�1" ; V n�1" 2 RJ�0, (2.12a) an be rewritten as:Find Un" 2 RJ suh that F nU (Un" ; V n�1" ) = XnU 2 RJ�0 ; (2.44)where [XnU ℄j := (Un�1" ; �j)h for all j 2 J . On noting (2.44), (2.43) and that F nU (0; V n�1" ) =0, we have existene and uniqueness of Un" 2 Kh solving (2.12a).Given Un" ; V n�1" 2 Kh, to prove the existene of V n" we will make use of the Brouwer�xed point theorem, see e.g. Renardy and Rogers (1992, Theorem 9.36). Let eF nV : RJ !RJ be de�ned by[ eF nV (Z)℄j := (Z; �j)h + �n � (Un" �"(Z)rZ;r�j) 8 j 2 J : (2.45)(2.12b) an then be rewritten as: Find V n" 2 RJ suh thateF nV (V n" ) = XnV 2 RJ�0 ; (2.46)where [XnV ℄j := (V n�1" + �n � g(Un" ; V n�1" ); �j)h for all j 2 J . It follows from (2.22) thateF nV is ontinuous and hene it is suÆient to show that eF nV is oerive. On noting (2.21)and that Un" 2 Kh, we have thatXj2J [ eF nV (Z)℄j Zj � jZj2h + �n � (Un" �"(Z)rZ;rZ) � jZj2h 8 Z 2 Sh : (2.47)Hene the oeriveness of eF nV follows from (2.47), (2.17) and (2.2). Therefore, on notingthe aforementioned theorem and (2.46), we have existene of V n" 2 Sh solving (2.12b).The fat that V n" 2 Kh will be demonstrated below.For the remainder of the proof we proeed by indution. We assume that the bounds(2.40a,b) hold for n replaed by n� 1. On setting 1 := (1; � � �; 1)T 2 RJ , it follows from(2.42), (2.33a), (2.34a), (2.44), (1.3) and (2.40a,b) with n replaed by n � 1 that for allj 2 J[F nU (UnM 1;Vn�1m 1)� F nU (Un" ;Vn�1m 1)℄j =(Un�1M � Un�1" ; �j)h + �n (g(Un" ; V n�1" )� g(Un" ;Vn�1m ); �j)h � 0 ; (2.48a)[F nU (Un" ;Vn�1M 1)� F nU (Unm 1;Vn�1M 1)℄j =(Un�1" � Un�1m ; �j)h + �n (g(Un" ;Vn�1M )� g(Un" ; V n�1" ); �j)h � 0 : (2.48b)Noting (2.48a,b) and (2.43) we obtain that the desired bounds (2.40a) hold for n.12



Let F nV : RJ ! RJ be de�ned by[F nV (Z)℄j := (Z; �j)h + �n� (Un" �"(V n" )rZ;r�j) 8 j 2 J : (2.49)Hene on noting (2.49) and (2.46), the solution V n" 2 Sh of (2.12b) is suh thatF nV (V n" ) = XnV 2 RJ�0 : (2.50)Adopting the notation of (2.8), we have for all � 2 T h, on noting that RT� � R�1� , thatZ� Un" (r�k)T�"(V n" )r�j dx � dXi=1 Zb� bUn" [b�"(bV n" )℄ii �b�j�bxi �b�k�bxi dbx 8 j; k 2 J: (2.51)It follows from (2.51), Un" 2 Kh, (2.9), (2.5) and (2.10) that F nV (Z) an be written asBZ with B 2 RJ�J being anM-matrix. Hene F nV (�) : RJ ! RJ is an inverse isotonehomeomorphism, and we dedue immediately from (2.50) and F nV (0) = 0 that V n" 2 Kh.It follows from (2.49), (2.33b), (2.34b), (2.50), (1.3), (2.40a) and the bounds (2.40b)with n replaed by n� 1 that for all j 2 J[F nV (VnM 1)� F nV (V n" )℄j =(Vn�1M � V n�1" ; �j)h + �n � (g(UnM ;Vn�1M )� g(Un" ; V n�1" ); �j)h � 0 ; (2.52a)[F nV (V n" )� F nV (Vnm 1)℄j =(V n�1" � Vn�1m ; �j)h + �n � (g(Un" ; V n�1" )� g(Unm;Vn�1m ); �j)h � 0 : (2.52b)On noting that F nV is inverse isotone and (2.52a,b), we obtain that the desired bounds(2.40b) hold for n. As the bounds (2.40a,b) hold for n = 0, see (2.35), it follows byindution that they hold for all n � 0Finally, we note on hoosing � � 1 in (2.12a,b) that (� Un" + V n" ; 1)h = (� Un�1" +V n�1" ; 1)h and thus the desired result (2.41) holds. utLemma. 2.4. Let the assumptions (A) hold, g(�; �) satisfy (1.4), and U0M ; U0m; V0M ; V0msatisfy (2.35). Then for all " 2 (0; 1); h > 0 and for all time partitions f�ngNn=1, asolution fUn" ; V n" gNn=1 of (Ph;�" ) is uniformly bounded. In partiular, it holds for all n � 0that U0M � Un" (x) � 0 and VM � V n" (x) � V0m 8 x 2 
; (2.53a)where VM := exp(� f(U0M)T )V0M : (2.53b)Proof. From (2.33b), (1.4) and (2.36a,b), it follows for all n � 1 thatVnM = Vn�1M + �n � g(UnM ;Vn�1M ) � Vn�1M + �n � g(U0M ;Vn�1M )= Vn�1M + �n � f(U0M)Vn�1M � exp(�n � f(U0M))Vn�1M � exp(� f(U0M) tn)V0M : (2.54)The desired result (2.53a,b) then follows from (2.40a,b) and (2.54). ut13



Theorem. 2.2. Let the assumptions of Lemma 2.4 hold. Then for all " 2 (0; 1); h > 0and for all time partitions f�ngNn=1, a solution fUn" ; V n" gNn=1 of (Ph;�" ) satis�esNXn=1 �n ���Un" �Un�1"�n ���2h +  max1�n�N jUn" j21 +  NXn=1 jUn" � Un�1" j21 + NXn=1 jV n" � V n�1" j2h+ � NXn=1 �n(Un" �"(V n" )rV n" ;rV n" ) + � NXn=1 �n(Un" rV n" ;rV n" ) + max1�n�N(L"(V n" ); 1)h+ NXn=1 �n V n" �V n�1"�n 2�1 � C jU0" j21 + C(U0M ;V0M ; T ) : (2.55)Proof. Choosing � � (Un" � Un�1" ) in (2.12a) yields that�n ���Un" �Un�1"�n ���2h +  (rUn" ;r(Un" � Un�1" )) + (g(Un" ; V n�1" ); Un" � Un�1" )h = 0 : (2.56)On noting (1.15), (1.16), (1.4) and (2.53a,b) it follows that�n ���Un" �Un�1"�n ���2h +  jUn" j21 +  jUn" � Un�1" j21 �  jUn�1" j21 + �n jg(Un" ; V n�1" )j2h�  jUn�1" j21 + �n C(U0M ;V0M ; T ) : (2.57)Summing (2.57) from n = 1; : : : ; k, for k = 1; : : : ; N , yields the �rst three bounds in(2.55).Choosing � � V n" in (2.12b) and applying (1.16), (1.4) and (2.53a,b) we have that12 jV n" j2h + 12 jV n" � V n�1" j2h + �n � (Un" �"(V n" )rV n" ;rV n" )= 12 jV n�1" j2h + �n � (g(Un" ; V n�1" ); V n" )h� 12 jV n�1" j2h + �n C(U0M ;V0M ; T ) : (2.58)Summing (2.58) from n = 1; : : : ; N yields the fourth and �fth bound in (2.55).Choosing � � �h[L0"(V n" )℄ in (2.12b) and noting (2.6a,b) and (2.5) yields that(L"(V n" )� L"(V n�1" ); 1)h + �n � (Un" rV n" ;rV n" ) � �n � (g(Un" ; V n�1" );L0"(V n" ))h : (2.59)Summing (2.59) from n = 1; : : : ; k, for k = 1 ! N , and noting (1.4), (2.53a,b) and thatL0"(V n" ) � [lnVM ℄+ yields the sixth and seventh bound in (2.55).Finally from (2.3), (2.12b), (2.53a,b), (2.21), (2.17), (2.20), (1.4) and on realling from(2.6a) that �" is positive semide�nite we obtain that�V n" �V n�1"�n ; �� = �V n" �V n�1"�n ; Qh��h= �� �Un" �"(V n" )rV n" ;r(Qh�)�+ � �g(Un" ; V n�1" ); Qh��h� C(U0M ) hj[Un" �"(V n" )℄ 12rV n" j0 + jg(Un" ; V n�1" )jhi kQh�k1� C(U0M ;V0M ; T ) hj[Un" �"(V n" )℄ 12rV n" j0 + 1i k�k1 8 � 2 H1(
) (2.60a)14



and hene that V n" �V n�1"�n 2�1 � C(U0M ;V0M ; T ) hj[Un" �"(V n" )℄ 12rV n" j20 + 1i : (2.60b)Multiplying (2.60b) by �n, summing from n = 1; : : : ; N , and noting the �fth bound in(2.55) yields the �nal bound in (2.55). utLemma. 2.5. Let u0; v0 2 K \L1(
) and the assumptions (A) hold. On hoosing eitherU0" � Qhu0, V 0" � Qhv0 or in the ase d = 1 U0" � �hu0, V 0" � �hv0; it follows thatU0" ; V 0" 2 Kh and U0M � supx2
 u0(x), V0M � supx2
 v0(x) satisfying (2.35) are suh thatfor all h > 0 and " 2 (0; 1) jU0" j21 + C(U0M ;V0M ; T ) � C(T ) : (2.61)Proof. The desired result (2.61) follows immediately from (2.20), (2.15), (2.35) and(2.19). ut3 ConvergeneLet U"(t) := t�tn�1�n Un" + tn�t�n Un�1" t 2 [tn�1; tn℄ n � 1 (3.1a)and U+" (t) := Un" ; U�" (t) := Un�1" t 2 (tn�1; tn℄ n � 1: (3.1b)Using the above notation, and introduing analogous notation for V", and (2.40a,b); then(2.12a,b) an be restated as: Find fU"; V"g 2 C([0; T ℄;Kh)�C([0; T ℄;Kh) suh thatZ T0 h ��U"�t ; ��h +  �rU+" ;r�� i dt = � Z T0 (g(U+" ; V �" ); �)h dt8 � 2 L2(0; T ;Sh); (3.2a)Z T0 h ��V"�t ; ��h + � �U+" �"(V +" )rV +" ;r��i dt = � Z T0 (g(U+" ; V �" ); �)h dt8 � 2 L2(0; T ;Sh): (3.2b)Lemma. 3.1. Let u0, v0 2 K \ L1(
), g(�; �) satisfy (1.4) and fT h; U0" ; V 0" ; �; "gh>0 besuh that(i) either U0" � Qhu0, V 0" � Qhv0 or in the ase d = 1 U0" � �hu0, V 0" � �hv0;(ii) 
 and fT hgh>0 ful�l assumption (A), " 2 (0; 1) and �n � C �n�1, n = 2; : : : ; N ;(iii) ", � ! 0 as h! 0. 15



Then there exists a subsequene of fU"; V"gh and funtionsu 2 L1(
T ) \ L1(0; T ;K) \H1(0; T ;L2(
)) (3.3a)and v 2 f� 2 L1(
T ) : � � 0 a:e: in 
Tg \H1(0; T ; (H1(
))0) (3.3b)suh that u v 2 L2(0; T ;H1(
)) ; (3.3)and as h! 0U"; U�" ! u weak-� in L1(
T ); (3.4a)�U"�t ! �u�t weakly in L2(
T ); (3.4b)U"; U�" ! u weak-� in L1(0; T ;H1(
)); (3.4)U"; U�" ! u strongly in Lp(
T ) and a:e: in 
T ; (3.4d)V"; V �" ! v weak-� in L1(
T ); (3.5a)�V"�t ! �v�t weakly in L2(0; T ; (H1(
))0); (3.5b)f(U+" )V �" ! f(u) v weak-� in L1(
T ); (3.6a)U" V"; U�" V �" ! u v strongly in Lp(
T ) and a:e: in 
T ; (3.6b)U�" V �" ! u v weakly in L2(0; T ;H1(
)); (3.6)for any p 2 [1;1). In addition it holds that R� [� u(�; t) + v(�; t)℄ = R� [� u0 + v0℄ fora:e: t 2 [0; T ℄.Proof. It follows from the de�nitions (3.1a,b) and the bounds (2.55), as ; � > 0,together with (2.17), (2.53a,b), assumptions (i) and (ii), and (2.61) thatkU (�)" k2L1(
T ) + kU (�)" k2L1(0;T ;H1(
)) + k�U"�t kL2(
T ) + ��1 kU+" � U�" k2L2(0;T ;H1(
))+ kV (�)" k2L1(
T ) + ��1 kV +" � V �" k2L2(
T ) + k[U+" �"(V +" )℄ 12rV +" k2L2(
T )+ k(U+" ) 12rV +" k2L2(
T ) + k�V"�t kL2(0;T ;(H1(
))0) � C(T ); (3.7)where U (�)" is an abbreviation for \with" and \without" the supersripts \+" and \�";similarly, V (�)" . Hene on noting (3.7), (3.1a,b), (2.40a,b), (2.41), assumptions (i) and (iii),(2.3) and (2.15) we an hoose a subsequene fU"; V"gh suh that the onvergene results(3.3a,b), (3.4a{) and (3.5a,b) hold and the additional integral ondition is satis�ed.The onvergene result (3.4d) for p = 2 follows immediately on extrating a furthersubsequene from (3.4b,), (1.14a), the fourth bound in (3.7) and the assumption (iii).The result (3.4d) for any p 2 [1;1) then follows from the a:e: onvergene and (3.3a).The a:e: onvergene (3.4d), together with (1.4) and (3.3a) imply for any p 2 [1;1) thatf(u) 2 L1(
T ) and f(U (�)" )! f(u) a:e: in 
T and strongly in Lp(
T ): (3.8)Combining (3.8) and (3.5a) yields the desired result (3.6a).Similarly to the proof of (3.6a), we have thatU" V"; U�" V �" ! u v weak-� in L1(
T ): (3.9)16



To prove (3.6b), we introdueW n" := Un" V n" 62 Sh n = 0; : : : ; N; (3.10)and de�ne W (�)" similarly to U (�)" as in (3.1a,b). It then follows from (3.10) and (3.7) forany � 2 L2(0; T ;W 1;q(
)), with q = 2 if d = 1 and q > 2 if d = 2, that����Z T0 ��W"�t ; �� dt���� = ����Z T0 �V +" �U"�t + U�" �V"�t ; �� dt����� C � k�U"�t kL2(
T )k�kL2(
T ) + k�V"�t kL2(0;T ;(H1(
))0) kU�" �kL2(0;T ;H1(
))�� C k�kL2(0;T ;W 1;q(
)) ; (3.11)where we have noted from (1.13) thatkr(U�" �)kL2(
T ) � kU�" kL1(0;T ;H1(
))k�kL2(0;T ;L1(
)) + kU�" kL1(
T )k�kL2(0;T ;H1(
))� C k�kL2(0;T ;W 1;q(
)) : (3.12)We have from (3.10), (3.1a,b) and (3.7) thatkrW"k2L2(
T ) � krW+" k2L2(
T ) + krW�" k2L2(
T )� 2hkV +" rU+" k2L2(
T ) + kV �" rU�" k2L2(
T )+ kU+" rV +" k2L2(
T ) + kU�" rV �" k2L2(
T )i� C h1 + k(U�" ) 12rV �" k2L2(
T )i � C; (3.13)where we have noted from (2.55), (i), (2.61), the time step ontrol (ii), (2.20) and (2.15)that k(U�" ) 12rV �" k2L2(
T ) � NXn=1 �nj(Un�1" ) 12rV n�1" j20 � N�1Xn=0 �n+1j(Un" ) 12rV n" j20� C jrV 0" j20 + C N�1Xn=1 �nj(Un" ) 12rV n" j20 � C: (3.14)Combining (3.11), (3.14) and (3.7) yields thatkW"kL2(0;T ;H1(
)) + k�W"�t kL2(0;T ;(W 1;q(
))0) � C : (3.15)The bounds (3.15) and (1.14a) imply the existene of a subsequene fW"gh suh thatW" ! w strongly in L2(
T ); weakly in L2(0; T ;H1(
)) : (3.16)Next we note from (3.10), (3.1a,b), (3.7) and (iii) thatkW" �W�" kL2(
T ) + kU" V" �W�" kL2(
T ) � C kU+" � U�" kL2(
T ) + C kV +" � V �" kL2(
T )! 0 as h! 0 : (3.17)Combining (3.16), (3.17), (3.9) and (3.10) yields the desired result (3.6b) for p = 2 onextrating a further subsequene. The result (3.6b) for any p 2 [1;1) then follows fromthe a:e: onvergene and (3.3a,b). Finally, the results (3.3) and (3.6) follow from (3.16),(3.13), (3.10) and (3.6b). ut17



Before proving our onvergene theorem, we make a �nal assumption on f(�) and 
:f 2 C0;1[0;U0M ℄ and 
 is onvex: (3.18)It is easily established from (3.18) and (2.1) thatj�h[f(�)℄j1 � Cf j�j1 8 � 2 Kh with maxx2
 �(x) � U0M ; (3.19)where Cf is the Lipshitz onstant of f .Theorem. 3.1. Let the assumptions of Lemma 3.1 and (3.18) hold. In addition letu0 2 H2(
) if d = 2. Then there exist funtions u and v satisfying (3.3a{) andu 2 L1(0; T ;Hd(
)) \ C(
T ); rv 2 L2lo(fu > 0g); (3.20)where fu > 0g � 
T is the open set de�ned byfu > 0g := f(x; t) 2 
T : u(x; t) > 0g; (3.21)and there exists a subsequene of fU"; V"gh satisfying (3.4a{d), (3.5a{d) and as h! 0V"; V �" ! v strongly in Lp(fu > 0g); p 2 [1;1);and a:e: in fu > 0g; (3.22a)U+" �"(V +" )rV +" !Hfu>0g u vrv weakly in L2(
T ); (3.22b)where Hfu>0g is the harateristi funtion of the set fu > 0g.Moreover u and v ful�l u(�; 0) = u0(�), v(�; 0) = v0(�) andZ T0 � ��u�t ; ��+  (ru;r�) � dt = � Z T0 (f(u) v; �) dt8 � 2 L2(0; T ;H1(
)); (3.23a)Z T0 
�v�t ; �� dt+ � Zfu>0g u vrv :r� dx dt = � Z T0 (f(u) v; �) dt8 � 2 L2(0; T ;H1(
)); (3.23b)where h�; �i denotes the duality pairing between (H1(
))0 and H1(
).Proof. For any � 2 L2(0; T ;H2(
)), we hoose � � �h� in (3.2a) and now analyse thesubsequent terms. On noting (2.14) and (3.7), we have that���� Z T0 �rU+" ;r(I � �h)�� dt ���� � C h kU+" kL2(0;T ;H1(
))k�kL2(0;T ;H2(
))� C h k�kL2(0;T ;H2(
)) 8 � 2 L2(0; T ;H2(
)): (3.24)18



It follows from (3.24) and (3.4) thatZ T0 (rU+" ;r(�h�) ) dt! Z T0 (ru;r�) dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.25)We have from (2.18) and (2.14) that for any Y 2 L2(0; T ;Sh) and � 2 L2(0; T ;H2(
))���� Z T0 h �Y; �h��h � (Y; �) i dt ���� � Z T0 h j �Y; �h��h � �Y; �h�� j+ j �Y; (I � �h)�� j i dt� C h kY kL2(
T ) � k�h�kL2(0;T ;H1(
)) + h k�kL2(0;T ;H2(
))�� C h kY kL2(
T ) k�kL2(0;T ;H2(
)) : (3.26)Combining (3.26) for Y � �U"�t , (3.7) and (3.4b) yields thatZ T0 ��U"�t ; �h��h dt! Z T0 ��u�t ; �� dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.27)It follows from (1.13) that���� Z T0 � (I � �h)[f(U+" )V �" ℄; �� dt ���� � C k(I � �h)[f(U+" )V �" ℄kL2(0;T ;L1(
)) k�kL2(0;T ;H2(
))8 � 2 L2(0; T ;H2(
)): (3.28)Next we note from (3.7), (2.16), (2.18), (2.53a) and (3.19) thatk(I � �h)[f(U+" )V �" ℄kL2(0;T ;L1(
))� kV �" (I � �h)[f(U+" )℄kL2(0;T ;L1(
)) + k(I � �h)[V �" �h(f(U+" ))℄kL2(0;T ;L1(
))� C h k�h[f(U+" )℄kL2(0;T ;H1(
)) � C h [1 + kU+" kL2(0;T ;H1(
))℄ � C h : (3.29)Combining (3.26) for Y � �h[f(U+" )V �" ℄, (3.7), (3.28), (3.29) and (3.6a) yields thatZ T0 (f(U+" )V �" ; �h�)h dt! Z T0 (f(u) v; �) dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.30)It follows from (3.2a), (1.4), (3.25), (3.27), (3.30), the denseness of L2(0; T ;H2(
)) inL2(0; T ;H1(
)) and (3.7) that (3.23a) holds.On noting (3.3a{) we have that u jrvj 2 L2(
T ), whih together with (1.4) and (3.18)yields that kr(f(u) v)kL2(
T ) = kf 0(u) vru+ f(u)rvkL2(
T )� Cf kvrukL2(
T ) + Cf kurvkL2(
T ) � C : (3.31)Combining (3.31), (1.4) and (3.3a,b) we obtain that f(u) v 2 L2(0; T ;H1(
)). A simpleenergy estimate for (3.23a) then yields for d = 2, on realling our assumptions on 
and the initial data, that u 2 L1(0; T ;H2(
)). This an be easily seen by hoosing� � �Hft?>tg�(�u�t ) in (3.23a) for all t? 2 (0; T ) and performing integration by parts in19



spae. As usual suh a proedure an be justi�ed via a Galerkin approximation. Henethe �rst desired result on u in (3.20) follows on noting (3.3a). The seond u result in (3.20)then follows immediately from the �rst, (3.3a), the ompat embedding Hd(
) ,! C(
)and (1.14b). Finally, the v result in (3.20) follows from the u result and the fat thatu jrvj 2 L2(
T ).For any � 2 H1(0; T ;H2(
)) we hoose � � �h� in (3.2b) and now analyse thesubsequent terms. Firstly on noting (2.18), (2.14), (1.13) in time and (3.7), we have forall � 2 H1(0; T ;H2(
)) that���� Z T0 h ��V"�t ; �h��h � ��V"�t ; �h�� i dt ����= ����� Z T0 �V"; �(�h�)�t �h dt + �V"(�; T ); �h�(�; T )�h � �V"(�; 0); �h�(�; 0)�h+ Z T0 �V"; �(�h�)�t � dt� �V"(�; T ); �h�(�; T )�+ �V"(�; 0); �h�(�; 0)� ����� C h kV"kL1(
T ) k�kH1(0;T ;H2(
)) � C h k�kH1(0;T ;H2(
)) : (3.32)Similarly to (3.24), it follows from (2.14) and (3.7) that���� Z T0 ��V"�t ; (I � �h)�� dt ���� � C h k�V"�t kL2(0;T ;(H1(
))0) k�kL2(0;T ;H2(
))� C h k�kL2(0;T ;H2(
)) 8 � 2 L2(0; T ;H2(
)): (3.33)Combining (3.32), (3.33) and (3.5b) yields thatZ T0 ��V"�t ; �h��h dt! Z T0 h�v�t ; �i dt as h! 0; 8 � 2 H1(0; T ;H2(
)): (3.34)The desired result (3.22a) follows immediately from (3.6b), (3.4d), (3.21) and (3.3b).It follows from (2.21) and (3.7) thatkU+" �"(V +" )rV +" kL2(
T ) � C k[U+" �"(V +" )℄ 12rV +" kL2(
T ) � C : (3.35)In view of (3.35) and (2.14), we dedue for all � 2 L2(0; T ;H2(
)) that���� Z T0 �U+" �"(V +" )rV +" ;r(I � �h)�� dt ���� � C h k�kL2(0;T ;H2(
)) : (3.36)Furthermore, we have on noting (3.35) that there exists a limit z 2 L2(
T ) suh that forall � 2 L2(0; T ;H1(
))Z T0 �U+" �"(V +" )rV +" ;r�� dt ! Z T0 (z;r�) dt as h! 0: (3.37)20



In the remaining part of the proof we will establish that z � Hfu>0g u vrv. It followsfrom (2.21), (3.7), (1.13) and (3.4d) that for all � 2 L1(0; T ;W 1;1(
))���� Z
T (1�Hfu>0g)U+" �"(V +" )rV +" :r� dx dt ����� C k[U+" �"(V +" )℄ 12 rV +" kL2(
T ) �Z
T (1�Hfu>0g) (U+" � u) jr�j2 dx dt� 12� C kU+" � uk 12L2(
T ) k�kL1(0;T ;W 1;1(
)) ! 0 as h! 0 : (3.38)It follows from (3.37) and (3.38) that z � 0 a:e: on 
T n fu > 0g. Next we note from(3.7), (3.4,d) and (3.6b,) that for any � 2 L1(0; T ;W 1;1(
))Z
T (U+" )3r[(V +" )2℄:r� dx dt= 2 Z
T [U+" (U+" V +" )r(U+" V +" )� (U+" V +" )2rU+" ℄:r� dx dt! 2 Z
T [ u (u v)r(u v)� (u v)2ru ℄:r� dx dt= Z
T u3r(v2):r� dx dt as h! 0 : (3.39)Furthermore, we have on noting (3.7) that for any � 2 L1(0; T ;W 1;1(
))���� Z
T (U+" )3 [�"(V +" )� V +" I℄rV +" :r� dx dt ����� C k(U+" ) 12 rV +" kL2(
T ) k�kL1(0;T ;W 1;1(
)) �Z
T (U+" )5 k�"(V +" )� V +" Ik2 dx dt� 12� C k�kL1(0;T ;W 1;1(
)) k(U+" ) 12 k�"(V +" )� V +" Ik kL2(
T ): (3.40)It follows from (3.7), (2.32), (2.13), (2.17), (2.40a,b), (2.31) and assumption (iii) thatk(U+" ) 12 k�"(V +" )� V +" Ik kL2(
T )� k(U+" ) 12 k�"(V +" )� �h[�"(V +" )℄ Ik kL2(
T ) + k(U+" ) 12 k( �h[�"(V +" )℄� V +" ) Ik kL2(
T )�  Z T0 X�2T h h2� j(U+" ) 12 r�h[�"(V +" )℄j20;� dt! 12 + C k�h[�"(V +" )℄� V +" kL2(
T )�  Z T0 X�2T h h2� j(U+" ) 12 rV +" j20;� dt! 12 + C k�h[�"(V +" )℄� V +" kL2(
T )� C h k(U+" ) 12 rV +" kL2(
T ) + C k�h[�"(V +" )� V +" ℄kL2(
T )� C ( h+ " ) ! 0 as h! 0 : (3.41)21



Hene we have on noting (3.4d), (3.35), (3.37), (3.40), (3.41) and (3.39) that for any� 2 L1(0; T ;W 1;1(
))2 Z
T u2 z:r� dx dt  2 Z
T (U+" )3 �"(V +" )rV +" :r� dx dt= 2 Z
T (U+" )3 V +" rV +" :r� dx dt + 2 Z
T (U+" )3 [�"(V +" )� V +" I℄rV +" :r� dx dt! Z
T u3r(v2):r� dx dt : (3.42)Therefore it follows from (3.42) that2 u2 z = u3r(v2) a:e: on 
T =) z = 12 ur(v2) a:e: on fu > 0g : (3.43)Combining (3.43), (3.36), (3.37) and (3.38), and noting (1.13) yields thatZ T0 �U+" �"(V +" )rV +" ;r(�h�)� dt ! Zfu>0g u vrv:r� dx dt 8 � 2 H1(0; T ;H3(
))(3.44)and the desired result (3.22b). It follows from (3.2b), (1.4), (3.44), (3.34), (3.30), thedenseness of H1(0; T ;H3(
)) in L2(0; T ;H1(
)) and (3.7) that (3.23b) holds.Finally, it follows from (3.4b,), (3.5a,b) and (1.14b) thatU" ! u in C([0; T ℄;L2(
)) and V" ! v in C([0; T ℄; (H1(
))0) : (3.45)Furthermore the assumptions (i), (2.15) and (2.20) yield thatU0" ! u0 and V 0" ! v0 strongly in L2(
) : (3.46)Combining (3.45) and (3.46) we obtain that u(�; 0) = u0(�), v(�; 0) = v0(�). utRemark. 3.1. For initial data u0; v0 2 H2(
), it is onvenient in pratie to hooseU0" � �hu0 and V 0" � �hv0 for d = 2. We note that all of the results in the aboveLemmas and Theorems obviously remain true on noting (2.14). Also, in this ase we donot require (2.20) for (2.61), (3.14) and (3.46) to hold. Hene we only need the quasi-uniformity assumption in order to obtain (2.60a,b). However, we an replae this with thefar milder assumption that fT hgh>0 is a regular partitioning at the expense of a minimumtime step onstraint as in Barrett et al. (1998). Introduing G : (H1(
))0 ! H1(
) andGh : C(
)! Sh suh that(rGz;r�) + (Gz; �) = hz; �i 8 � 2 H1(
) ; (3.47a)(rGhz;r�) + (Ghz; �) = (z; �)h 8 � 2 Sh : (3.47b)It is easily established from fT hgh>0 being a regular partitioning, ellipti regularity, as 
is onvex polygonal if d = 2, and (2.18) thatk(G � Gh)zhk1 � C h kzhk0 8 zh 2 Sh : (3.48)22



Then testing (2.12b) with � � Gh �V"�t we obtain, similarly to (2.60a), thatkGh �V"�t kL2(0;T ;H1(
)) � C (3.49)on noting (2.61). Combining (3.48), (3.49) and noting the fourth bound in (2.55), (2.17)and (3.1a), it follows thatkG �V"�t kL2(0;T ;H1(
)) � k(G � Gh)�V"�t kL2(0;T ;H1(
)) + kGh �V"�t kL2(0;T ;H1(
))� C h k�V"�t kL2(
T ) + C � C (�� 12min h + 1) � C ; (3.50)if the mild time step onstraint C h2 � �min := minn=1;:::;N �n is satis�ed.Remark. 3.2. If instead of (1.2) b(�; �) was just degenerate in s, i.e. b(r; s) := � s, then(1.1b) would be a porous medium equation with a reation term. A natural disretizationof this would then be (2.12b) with the seond term on the left-hand side replaed by12� �r�h[(V n" )2℄;r��, see e.g. Nohetto and Verdi (1988). This would suggest that anatural disretization of (1.1b) with b(�; �) de�ned by (1.2) would be�V n" �V n�1"�n ; ��h + 12 � �Un" r�h[(V n" )2℄;r�� = � (g(Un" ; V n�1" ); �)h 8 � 2 Sh: (3.51)The approximation (3.51) has two advantages over (2.12b) in that it is a simple matter (a)to establish the existene and uniqueness of V n" satisfying (3.51), whereas the uniquenessof V n" satisfying (2.12b) is not guaranteed; (b) to onstrut and prove onvergene ofglobally onvergent iterative methods to solve the nonlinear system (3.51) for V n" , whereasonvergene of algorithms for solving (2.12b) is not guaranteed, see (4.2) below. However,for the approximation (3.51) it does not appear possible to prove a disrete analogue of(1.11), the sixth bound in (2.55), whih plays suh a key role in our onvergene proof.4 Numerial ResultsBefore presenting some numerial results in both one and two spae dimensions, we brieystate algorithms for solving the resulting system of algebrai equations for fUn" ; V n" g aris-ing at eah time level from the approximation (Ph;�" ) in the model ase b(r; s) := � r s andg(r; s) := r s. As (2.12a) is independent of V n" , we �rst solve the resulting linear equation�Un" �Un�1"�n ; ��h +  (rUn" ;r�) + (Un" V n�1" ; �)h = 0 8 � 2 Sh (4.1)to obtain Un" . Then the nonlinear equation (2.12b) is solved for V n" . In order to ahievethis, we use the following iterative proedure: For k � 1 �nd V n;k" 2 Sh suh that�V n;k" �V n�1"�n ; ��h + � (Un" �"(V n;k�1" )rV n;k" ;r�) = � (Un" V n�1" ; �)h 8 � 2 Sh; (4.2)where V n;0" � V n�1" . (4.2) is the natural extension of the iterative proedure proposed inGr�un and Rumpf (2000) for solving a �nite element approximation of (1.8). As (4.2) is23



linear, existene of V n;k" follows from uniqueness; and this is easily established on noting(2.6a) and (2.40a). Hene the iteration (4.2) is well de�ned. We adopted the stoppingriterion kV n;k" � V n;k�1" k0;1 < tol (4.3)with tol = 10�8 and then set V n" � V n;k" . Although we are unable to show onvergene ofthis iteration, we observed good onvergene properties in pratie.The linear systems (4.1) and (4.2), for eah k, an be solved eÆiently using a onjugategradient algorithm. As the iteration in general took only a few steps to ful�l the stoppingriterion, the analogue of (4.3) for suessive iterates, we did not employ a preonditioner.We note for later purposes that (4.2) an easily be adapted to handle di�usion oef-�ients of the form b(r; s) := b1(r) s with b1(r) 2 C(R�0) and b1(r) � 0. In this ase theterm � (Un" �"(V n;k�1" )rV n;k" ;r�) in (4.2) is replaed by (�h[b1(Un" )℄ �"(V n;k�1" )rV n;k" ;r�).In the simpler ase that b(r; s) := b1(r), we solve the following linear system at eah timelevel: �V n" �V n�1"�n ; ��h + (�h[b1(Un" )℄rV n" ;r�) = � (Un" V n�1" ; �)h 8 � 2 Sh : (4.4)For the initial pro�les we hoseeither (i) u0(x) � u0max; v0(x) � v0max exp(�A jxj2) (4.5a)or (ii) u0(x) � u0max; v0(x) � v0R(jxj) := v0max2 [1� tanh(B(jxj � x0))℄ ; (4.5b)and set U0" � u0 and V 0" � �hv0 for simpliity as v0 2 H2(
), see Remark 3.1.4.1 Numerial Results for d = 1We onsider a uniform partitioning of 
 = (�L; L) with mesh points pj = �L+(j � 1)h,j = 1; : : : ;J , where h = 2LJ�1 .As no exat solution to (P) is known, a omparison between the solutions of (Ph;�" )on a oarse mesh, fU"; V"g, with those on a �ne mesh, fbu; bvg, was made. The dataused in eah experiment on the oarse meshes were L = 10, T = 50, �n � � = 1:25 h," = 1:25 � 10�3 h, where J = 2k + 1 (k = 6; : : : ; 10),  = � = � = 1 and A = 1,v0max = u0max = 0:71 for the initial pro�les in (4.5a). The data were the same for the �nemesh exept J = 213+1. The omputed error bounds are given in the table below, whereit appears that the L1(
T ) error for both u and v is onverging at the rate O(h). A plotof the respetive solutions an be seen in Figure 1.For the remainder of the results reported in this subsetion we �xed �n � � = 10�3," = 10�5, J = 210 + 1 and  = � = 1. For L = 10 and the same initial data as abovewe performed experiments to study the behaviour of the solutions. We observed that theomputed solutions U"(x; t) and V"(x; t) approah steady states for t suÆiently large;24



J 65 129 257 513 1025maxn=1;:::;N k�hbu(�; tn)� Un" (�)k0;1 � 103 56.28 29.56 15.00 7.380 3.473maxn=1;:::;N k�hbv(�; tn)� V n" (�)k0;1 � 103 75.50 39.21 19.83 9.745 4.584
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#J = 1025Figure 1: U"(x; 50) and V"(x; 50) for J = 2k + 1 (k = 6; : : : ; 10) and bu(x; 50); bv(x; 50).see Figure 2, where we plot U"(x; tn) and V"(x; tn) for tn = 0; 10; 100; 200. Note thatU"(x; t) � 0 and V"(x; t) � bV (x) for t � 100, whih is due to the degeneray of b(�; �).This means in partiular, that the V" solution is \frozen in" before a stable pro�le isestablished, so that no travelling wave is reated.
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V(x,t)Figure 2: U"(x; tn) and V"(x; tn) for tn = 0; 10; 100; 200.For larger hoies of L and T , however, one an observe travelling wave solutions. ForL = 150 and keeping all other parameters �xed, we inlude the plots of U"(x; tn) andV"(x; tn) for tn = 0; 400; : : : ; 4000; see Figure 3, where one an learly see the e�et of thedegenerate di�usion oeÆient b(�; �). At suÆiently late times the established \spike" inV" an not spread out any further, sine U" is pratially zero in this area. In areas wherethe nutrient supply is still suÆient, however, the growth of the bateria olony ontinues,reating two sharp fronts. Of ourse b(r; s) � r s is only \non-zero" in the small interfaialregion behind the sharp fronts in V", see also Figure 5. It is worth mentioning that theshape of the initial pro�les has a onsiderable e�et on the evolution. This is underlinedby the plots in Figure 4, where we hose B = 1, x0 = 5 and v0max = u0max = 0:71 in (4.5b)and kept the remaining parameters as before. Again one an observe the impat of the25
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Figure 10: Contour plots of U"(x; 1200) and V"(x; 1200) for J = (27 + 1)2.
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Figure 11: Contour plots of V"(x; 1200) for J = (2k + 1)2 (k = 8; 9).
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Figure 12: Contour plots of b(U"(x; 1200); V"(x; 1200)) for J = (2k + 1)2 (k = 7; 9).29



with very di�erent speeds ompared to the double degeneray ase, we had to adjust thetime sales aordingly. The results for the same initial data and parameters as beforefor b(r; s) := r and b(r; s) := s at T = 160 an be seen in Figure 13. Note that V" hasreahed a steady state for b(r; s) := r at this time. We did not inlude a �gure for the
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Figure 13: Contour plots of V"(x; 160) for b(r; s) := r and b(r; s) := s, respetively, withJ = (27 + 1)2.non-degenerate ase b(r; s) := 1, as the ontours look very similar to those in the plot onthe right-hand side of Figure 13.Finally, we performed experiments where the initial data v0 is not radially symmetri.Using polar oordinates, (�; �), we hose an initial pro�lev0pert(�; �) � v0R(� [1 + Æ1 os(3�) + Æ2 os(5�)℄) ; (4.6)where v0R is given by (4.5b), and Æ1 := 0:05, Æ2 := 0:1 are small perturbations to theradial symmetry of v0. Keeping all other parameters as before, with v0 replaed by (4.6),we plot the solutions for b(r; s) := r s at T = 1000 for J = (2k + 1)2 (k = 7; 8; 9), seeFigures 14 and 15. The regions where the di�usion oeÆient is e�etive at T = 1000 isplotted in Figure 16. Observe that the maximum value is approximately 2:0 � 10�3 atthis time and hene that the solutions in Figures 14 and 15 are lose to steady states. Forthis doubly degenerate di�usion we see that a small perturbation in the initial data leadsto a signi�ant hange in the evolution.One again one observes very di�erent behaviour for the di�usion oeÆients b(r; s) :=r and b(r; s) := s; see Figure 17. In the former ase the e�et of the perturbation to theinitial data is \frozen in" about the origin as U" approahes zero there in a short periodof time, whereas the front is smeared; similarly to the ase d = 1, see Figures 6 and 9.In the latter ase the perturbation of the initial data has negligible e�et as the plots onthe right-hand sides of Figures 13 and 17 are pratially idential, as to be expeted; seeFigures 7 and 9 for d = 1.
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Figure 14: Contour plots of U"(x; 1000) and V"(x; 1000) for J = (27 + 1)2.
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Figure 15: Contour plots of V"(x; 1000) for J = (2k + 1)2 (k = 8; 9).
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Figure 16: Contour plot of b(U"(x; 1000); V"(x; 1000)) for J = (27 + 1)2.31
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