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tWe 
onsider a fully pra
ti
al �nite element approximation of the following non-linear degenerate paraboli
 system�u�t � 
�u = �f(u) v in 
T := 
� (0; T ); 
 � Rd; d � 2;�v�t �r:(b(u; v)rv) = �f(u) v in 
Tsubje
t to no 
ux boundary 
onditions, and non-negative initial data u0 and v0 onu and v. Here we assume that 
 > 0, � � 0 and that f(r) � f(0) = 0 is Lips
hitz
ontinuous and monotoni
ally in
reasing for r 2 [0; supx2
 u0(x)℄. Throughout thepaper we restri
t ourselves to the model degenerate 
ase b(u; v) := � u v, where� > 0. The above models the spatiotemporal evolution of a ba
terium on a thin�lm of nutrient, where u is the nutrient 
on
entration and v is the ba
terial 
elldensity. In addition to showing stability bounds for our approximation, we prove
onvergen
e and hen
e existen
e of a solution to this nonlinear degenerate paraboli
system. Finally, some numeri
al experiments in one and two spa
e dimensions arepresented.Mathemati
s Subje
t Classi�
ation (2000): 35K50, 35K55, 35K57, 35K65, 65M12,65M60, 92C151 Introdu
tionWe 
onsider the initial boundary value problem(P) Find fun
tions u; v : 
� [0; T ℄! R�0 su
h that�u�t � 
�u = �g(u; v) in 
T := 
� (0; T ); (1.1a)�v�t �r:(b(u; v)rv) = � g(u; v) in 
T (1.1b)u(x; 0) = u0(x) � 0; v(x; 0) = v0(x) � 0 8 x 2 
; (1.1
)�u�� = b(u; v) �v�� = 0 on �
� (0; T ); (1.1d)1



where 
 is a bounded domain in Rd; d � 2, with a Lips
hitz boundary �
, � is normalto �
 and T > 0 is a �xed positive time. A system of the type (P) was proposedin Kawasaki et al. (1997) as a model for the spatiotemporal evolution of a ba
teriumon a thin �lm of nutrient, where u is the nutrient 
on
entration and v is the ba
terial
ell density. The di�usion 
oeÆ
ients of the nutrient and ba
terial 
ells are 
 > 0 andb(�; �) � 0, respe
tively. Throughout the paper, we will restri
t ourselves to the model
ase: b(r; s) := � r s; where � > 0 ; (1.2)that is, b(r; s) degenerates if either r or s = 0. The term g(�; �) � 0 represents the
onsumption rate of nutrient by the 
ells; while �g(�; �) is the growth rate of ba
teria,where � � 0 is the 
onversion rate of 
onsumed nutrient to ba
terial growth. We assumethroughout that g(�; �) is monotoni
ally in
reasing in both arguments. More pre
isely weassume that g(�; �) 2 C(R�0 �R�0) satis�esg(r2; s) � g(r1; s) � g(0; s) = 0 8 r2 � r1 � 0; s � 0 ;g(r; s2) � g(r; s1) � 0 8 r � 0; s2 � s1 � 0 : (1.3)The degenera
y in both arguments of b(�; �) makes the analysis of this system parti
u-larly diÆ
ult. In fa
t we are unaware of any existen
e proof or any numeri
al analysis workon su
h a system, even though there is a great deal of interest in the degenerate system(P) in the mathemati
al/theoreti
al biology 
ommunity, see e.g. Golding et al. (1998),Mimura et al. (2000) and the referen
es therein. Related models des
ribing ba
terialpattern formation are also dis
ussed in these review papers. In this paper we proposeand analyse a fully pra
ti
al �nite element approximation of (P) and as a 
onsequen
e weprove existen
e of a weak solution. For the stability bounds on this approximation, wewill restri
t ourselves tog(r; s) := f(r) s; where f(�) 2 C(R�0) and f(r2) � f(r1) � f(0) = 0 8 r2 � r1 � 0 ;(1.4)that is, g(r; s) has linear growth in s. For our main 
onvergen
e result, we will furtherassume that f(r) is Lips
hitz 
ontinuous for r 2 [0; supx2
 u0(x)℄, see (3.18) below. In any
ase, all of our assumptions on b(�; �) and g(�; �) in
lude the models proposed in Kawasakiet al. (1997): (1.2) with either Mi
haelis-Menten kineti
s, g(r; s) := � r s = (1+ 
 r), or itsbilinear approximation, g(r; s) := � r s; where �; 
 > 0.In analysing our approximation of (P) we will adapt some of the te
hniques used byDe
kelni
k et al. (2001); where they prove 
onvergen
e, in two spa
e dimensions, of a�nite element approximation of the following phase �eld model for di�usion indu
ed grainmotion: Find fun
tions u : 
T ! [�1; 1℄ and v : 
T ! R su
h that�u�t � 
�u� � u+ � v + �I[�1;1℄(u) 3 0 in 
T ; (1.5a)�v�t = r:(D(u)rv) in 
T ; (1.5b)where �I[�1;1℄ is the subdi�erential of I[�1;1℄, the indi
ator fun
tion of the set [�1; 1℄,D(r) := � (1� r2) and �; 
; �; � > 0. The system (1.5a,b) is supplemented by initial and2




ux boundary 
onditions for u and v. Here (1.5a) is a double obsta
le Allen-Cahn equationwith a for
ing obtained from the solution of the degenerate di�usion equation (1.5b).One 
an 
learly see similarities between (1.1a,b) and (1.5a,b). However, the degenera
yin (1.1b) is harder to deal with as b(�; �) degenerates with respe
t to both arguments.A double degenera
y of the type o

urring in (P) has been 
onsidered, for example,in Barrett and Blowey (2001); where they prove 
onvergen
e, in one spa
e dimension,of a �nite element approximation of the following degenerate Allen-Cahn/Cahn-Hilliardsystem: Find fun
tions u; v; w; z : 
T ! R su
h that�u�t = r: (D(u; v)rw) in 
T ; (1.6a)� �v�t = �D(u; v) z in 
T ; (1.6b)w = �
�u+ � [�(u+ v) + �(u� v) ℄� � u in 
T ; (1.6
)z = �
�v + � [�(u+ v)� �(u� v) ℄� � v in 
T ; (1.6d)where �(r) := ln r � ln (1 � r), D(r; s) := � r (1 � r) (1 � 4s2) and �; 
; �; �; �; � > 0.The system (1.6a{d) is supplemented by initial 
onditions for u; v and no 
ux boundary
onditions for u; v; w. Substituting (1.6
,d) into (1.6a,b), respe
tively, the above system
onsists of a degenerate fourth order equation 
oupled to a degenerate se
ond order equa-tion. In some ways (1.6a{d) is more diÆ
ult than the degenerate system (P) as (a) bothequations are degenerate, (b) � is a singular nonlinearity for
ing (u � v)(x; t) 2 (0; 1).However, the stru
ture of the system (1.6a{d) allows one to prove the following uniformboundskUkL1(0;T ;H1(
)) + kV kL1(0;T ;H1(
)) + k�U�t kL2(0;T ;(H1(
))0) + k�V�t kL2(
T ) � C (1.7)for a solution fU; V gh of an appropriate �nite element approximation, where h is thedis
retization parameter. In one spa
e dimension, on noting the 
ompa
t embeddingH1(
) ,! C(
) and (1.14b) below, the bounds (1.7) give rise to the uniform subsequen
e
onvergen
e U ! u, V ! v on 
T as h! 0. This uniform 
onvergen
e plays an essentialrole and hen
e the restri
tion to one spa
e dimension, d = 1, in Barrett and Blowey(2001). Unfortunately, the bounds on V in (1.7) do not hold for an approximation of (P).Hen
e the approa
h in Barrett and Blowey (2001) is not appropriate for (P), even ford = 1. As stated above, in this paper we adapt the te
hniques in De
kelni
k et al. (2001)to prove 
onvergen
e of our �nite element approximation of (P) for d � 2. To a
hievethis, we use a spe
ial dis
retization of b(�; �) in our �nite element approximation thatenables us to prove a key a priori bound. This approa
h is based on an idea introdu
ed inZhornitskaya and Bertozzi (2000) and Gr�un and Rumpf (2000) for the thin �lm equation:Find u : 
T ! R su
h that�u�t +r: (jujpr�u) = 0 in 
T ; (1.8)where p > 0. We now motivate this te
hnique for (P). On assuming (1.2) and (1.4), it iseasy to establish L1(
T ) bounds on u; v for (P); see Se
tion 2 below for su
h bounds onthe �nite element approximation of (P). Then testing a weak formulation of (1.1b) withv yields that � Z
T u v jrvj2 dx dt � 12 kv0k2L2(
) + � Z
T f(u) v2 dx dt � C : (1.9)3



The above bound only 
ontrols v jrvj2, and hen
e jr(v2)j2, where u > 0. However, if wede�ne a fun
tion L(�) su
h that�r[L0(�)℄ = r� =) L00(s) = s�1 ) L(s) = s(ln s� 1) + 1 ; (1.10)then testing (1.1b) with L0(v) yields that� Z
T u jrvj2 dx dt � Z
L(v0) dx+ � Z
T f(u)L0(v) v dx dt � C : (1.11)This bound 
ontrols jrvj2 where u > 0. The dis
rete analogue of (1.11) will play a keyrole in the 
onvergen
e analysis in Se
tion 3. To obtain su
h a bound we require a dis
reteanalogue of (1.10) and hen
e the spe
ial approximation of b(�; �).This paper is organised as follows. In Se
tion 2 we formulate a fully pra
ti
al �niteelement approximation of problem (P) and derive stability bounds. In Se
tion 3 we prove
onvergen
e of this approximation to a weak solution of (P), in spa
e dimensions d � 2,and hen
e we prove existen
e of a solution to (P). In Se
tion 4 we state an iterative s
hemefor solving the nonlinear dis
rete system at ea
h time level and present some numeri
al
omputations in both one and two spa
e dimensions.Notation and Auxiliary ResultsWe adopt the standard notation for Sobolev spa
es, denoting the norm of Wm;q(
) (m 2N, q 2 [1;1℄) by k�km;q and the semi-norm by j � jm;q. For q = 2, Wm;2(
) will be denotedby Hm(
) with the asso
iated norm and semi-norm written as, respe
tively, k � km andj�jm. We introdu
e also (Wm;q(
))0 and (Hm(
))0 the dual spa
es ofWm;q(
) and Hm(
),respe
tively, and denote the norm of (Hm(
))0 by k � k�m. Throughout (�; �) will denotethe standard L2 inner produ
t over 
. In addition we de�neR� � := 1m(
)(�; 1) 8 � 2 L1(
); where m(
) is the measure of 
 : (1.12)For later purposes, we re
all the following well-known Sobolev interpolation result, seee.g. Adams and Fournier (1977): Let q 2 [1;1℄, m � 1,r 2 8><>:[q;1℄ if m� dq > 0;[q;1) if m� dq = 0;[q;� dm�(d=q) ℄ if m� dq < 0;and � = dm � 1q � 1r�. Then there is a 
onstant C depending only on 
; q; r;m su
h thatfor all z 2 Wm;q(
) the inequalityjzj0;r � C jzj1��0;q kzk�m;q (1.13)4



holds. We re
all also the following 
ompa
tness results. Let X, Y and Z be Bana
hspa
es with a 
ompa
t embedding X ,! Y and a 
ontinuous embedding Y ,! Z. Thenthe embeddings f � 2 L2(0; T ;X) : ���t 2 L2(0; T ;Z) g ,! L2(0; T ;Y ) (1.14a)and f � 2 L1(0; T ;X) : ���t 2 L2(0; T ;Z) g ,! C([0; T ℄;Y ) (1.14b)are 
ompa
t, see Simon (1987). We note also for future referen
e Young's inequalityr s � 
2 r2 + 12
 s2 8 r; s 2 R; 
 2 R>0 ; (1.15)and the elementary identity2 r (r � s) = (r2 � s2) + (r � s)2 8 r; s 2 R : (1.16)Throughout C denotes a generi
 
onstant independent of h, � and "; the mesh and tempo-ral dis
retization parameters and the regularization parameter. In addition C(a1; � � �; aI)denotes a 
onstant depending on the nonnegative parameters faigIi=1 su
h that if ai � Cfor i = 1; : : : ; I, then C(a1; � � �; aI) � C.2 Finite Element ApproximationWe 
onsider the �nite element approximation of (P) at �rst under the following assump-tions on the mesh:(A) Let 
 be a polygonal domain if d = 2. Let fT hgh>0 be a quasi-uniform familyof partitionings of 
 into disjoint open simpli
es � with h� := diam(�) and h :=max�2T h h�, so that 
 = [�2T h�. In addition, it is assumed for d = 2 that allsimpli
es � 2 T h are right-angled.We note that the quasi-uniformity assumption 
an be avoided at the expense of a mild
onstraint on the minimum time step, see Remark 3.1 below. Furthermore we note thatthe right-angled simpli
es assumption is not a severe 
onstraint, as there exist adaptive�nite element 
odes that satisfy this requirement, see e.g. S
hmidt and Siebert (2000).Asso
iated with T h is the �nite element spa
eSh := f� 2 C(
) : � j� is linear 8 � 2 T hg � H1(
):We introdu
e alsoKh := f� 2 Sh : � � 0 in 
g � K := f� 2 H1(
) : � � 0 a:e: in 
g:Let J be the set of nodes of T h and fpjgj2J the 
oordinates of these nodes. Let J := #Jand f�jgj2J be the standard basis fun
tions for Sh; that is �j 2 Kh and �j(pi) = Æij for all5



i; j 2 J . The right angle 
onstraint on the partitioning is required for our approximationof b(�; �), see (2.6a,b) below, but one 
onsequen
e is thatZ�r�i :r�j dx � 0 i 6= j; 8 � 2 T h: (2.1)We introdu
e �h : C(
)! Sh, the interpolation operator, su
h that �h�(pj) = �(pj) forall j 2 J . A dis
rete inner produ
t on C(
) is then de�ned by(�1; �2)h := Z
 �h(�1(x) �2(x)) dx �Xj2J mj �1(pj) �2(pj); (2.2)where mj := (1; �j) > 0. We introdu
e the L2 proje
tion Qh : L2(
)! Sh de�ned by(Qh�; �)h = (�; �) 8 � 2 Sh: (2.3)For 
omputational purposes, we repla
e L 2 C1(R>0), see (1.10), for any " 2 (0; 1)by the regularized fun
tion L" : R! R�0 su
h thatL"(s) := ( s2�"22 " + (ln "� 1) s+ 1 s � "s (ln s� 1) + 1 " � s : (2.4)Hen
e L" 2 C2;1(R) with the �rst two derivatives of L" given byL0"(s) := ( "�1 s+ ln "� 1 s � "ln s " � s and L00"(s) := ( "�1 s � "s�1 " � s ; (2.5)respe
tively. Similarly to the approa
h in Zhornitskaya and Bertozzi (2000) and Gr�unand Rumpf (2000), we introdu
e �" : Sh ! [L1(
)℄d�d su
h that for all zh 2 Sh and a:e:in 
 �"(zh) is symmetri
 and positive semide�nite; (2.6a)�"(zh)r�h[L0"(zh)℄ = rzh ; (2.6b)that is, the dis
rete analogue of (1.10). Firstly, we give the 
onstru
tion of �" in thesimple 
ase when d = 1. Given zh 2 Sh and � 2 T h having verti
es pj and pk, we set�"(zh) j�:= 8>>>><>>>>: zh(pk)� zh(pj)L0"(zh(pk))� L0"(zh(pj)) = 1L00"(zh(�))for some � between pk and pj if zh(pk) 6= zh(pj);1L00"(zh(pk)) if zh(pk) = zh(pj):(2.7)Clearly the pie
ewise 
onstant 
onstru
tion in (2.7) satis�es the 
onditions (2.6a,b). Fol-lowing Gr�un and Rumpf (2000) we extend the above 
onstru
tion to d = 2. Let feigdi=1be the orthonormal ve
tors in Rd, su
h that the jth 
omponent of ei is Æij, i; j = 1; : : : ; d.6



Given non-zero 
onstants �i, i = 1; : : : ; d; let b�(f�igdi=1) be the referen
e open sim-plex in Rd with verti
es fbpigdi=0, where bp0 is the origin and bpi = �iei, i = 1; : : : ; d.Given a � 2 T h with verti
es fpjigdi=0, su
h that pj0 is the right-angled vertex, thenthere exists a rotation matrix R� and non-zero 
onstants f�igdi=1 su
h that the mappingR� : bx 2 Rd ! pj0 + R�bx 2 Rd maps the vertex bpi to pji, i = 0; : : : ; d, and hen
eb� � b�(f�igdi=1) to �. For any zh 2 Sh, we then set�"(zh) j�:= R� b�"(bzh) jb� RT� ; (2.8)where bzh(bx) � zh(R�bx) for all bx 2 b� and b�"(bzh) jb� is the d � d diagonal matrix withdiagonal entries, k = 1; : : : ; d,
[b�"(bzh)℄kk jb�:= 8>>>>>>>>><>>>>>>>>>:

bzh(bpk)� bzh(bp0)L0"(bzh(bpk))� L0"(bzh(bp0)) � zh(pjk)� zh(pj0)L0"(zh(pjk))� L0"(zh(pj0))= 1L00"(zh(�)) for some � between pjk and pj0if zh(pjk) 6= zh(pj0);1L00"(bzh(bp0)) � 1L00"(zh(pj0)) if zh(pjk) = zh(pj0):(2.9)As RT� � R�1� , rzh � R� brbzh, where x � (x1; � � �; xd)T , r � ( ��x1 ; � � �; ��xd )T , bx �(bx1; � � �; bxd)T and br � ( ��bx1 ; � � �; ��bxd )T , it easily follows that �"(zh) 
onstru
ted in (2.8)and (2.9) satis�es (2.6a,b). It is this 
onstru
tion that requires the right angle 
onstrainton the partitioning T h. We note also for future referen
e thatZb� �b�j�bxi �b�k�bxi dbx � 0 j 6= k; i = 1; : : : ; d; 8 � 2 T h: (2.10)For the purposes of the analysis it is 
onvenient to extend the domain of g(�; �) toR�R by settingg(r; s) = 0 8 r � 0; 8 s 2 R and g(r; s) = g(r; 0) 8 s � 0; 8 r 2 R : (2.11)In addition to T h, let 0 � t0 < t1 < : : : < tN�1 < tN � T be a partitioning of [0; T ℄into possibly variable time steps �n := tn � tn�1, n = 1; : : : ; N . We set � := maxn=1;:::;N �n.For any given " 2 (0; 1), we then 
onsider the following fully pra
ti
al �nite elementapproximation of (P) with b(�; �) as in (1.2):(Ph;�" ) For n � 1, �nd fUn" ; V n" g 2 Sh � Sh su
h that�Un" �Un�1"�n ; ��h + 
 (rUn" ;r�) + (g(Un" ; V n�1" ); �)h = 0 8 � 2 Sh; (2.12a)�V n" �V n�1"�n ; ��h + � (Un" �"(V n" )rV n" ;r�) = � (g(Un" ; V n�1" ); �)h 8 � 2 Sh; (2.12b)where U0" ; V 0" 2 Kh are approximations of u0; v0 � 0, respe
tively, e.g. U0" � �hu0 orQhu0 and similarly V 0" . In fa
t, it is a simple matter to dedu
e that a solution of (Ph;�" )is su
h that fUn" ; V n" g 2 Kh �Kh, n = 1; : : : ; N , see (2.40a,b) below.7



Below we re
all some well-known results 
on
erning Sh for m = 0 or 1:j�j1;� � C h�1� j�j0;� 8 � 2 Sh ; 8 � 2 T h ; (2.13)j(I � �h)�jm � C h2�m j�j2 8 � 2 H2(
) ; (2.14)j(I � �h)�jm � C h1�m j�j1 8 � 2 H1(
) ; if d = 1 ; (2.15)j(I � �h)f(�)j0 � C h j�h[f(�)℄j1 8 � 2 Kh ; (2.16)and j�j0 � j�jh := [(�; �)h℄ 12 � (d+ 2) 12 j�j0 8 � 2 Sh ; (2.17)j(zh; �)� (zh; �)hj � j(I � �h)(zh �)j0;1 � Ch1+m jzhjm j�j1 8 zh; � 2 Sh ; (2.18)It follows from (2.3) that(Qh�)(xj) � (�; �j)(1; �j) 8 j 2 J =) kQh�k0;1 � k�k0;1 8 � 2 L1(
): (2.19)Finally, as we have a quasi-uniform family of partitionings, it holds for m = 0 or 1 thatj(I �Qh)�jm � C h1�m k�k1 8 � 2 H1(
) : (2.20)We require the following results 
on
erning �"(�).Lemma. 2.1. Let the assumptions (A) hold and let k�k denote the spe
tral norm on Rd�d.Then for any given " 2 (0; 1) the fun
tion �" : Sh ! [L1(
)℄d�d satis�es" �T� � �T�"(zh)� � max("; kzhk0;1) �T � 8 � 2 Rd 8 zh 2 Sh (2.21)and is 
ontinuous. In parti
ular it holds for all zh1 , zh2 2 Sh, � 2 T h thatk[�"(zh1 )� �"(zh2 )℄ j� k = k[b�"(bzh1 )� b�"(bzh2 )℄ jb� k� "�1 max("; kzh1k0;1; kzh2k0;1) maxk=1;:::;d � jzh1 (pjk)� zh2 (pjk)j+ jzh1 (pj0)� zh2 (pj0)j � ;(2.22)where we have adopted the notation (2.8) and (2.9).Proof. (2.21) follows immediately from (2.8), (2.9) and (2.5). The equality in (2.22)follows immediately from (2.8). Adopting the notation (2.8) and (2.9) we have thatk[b�"(bzh1 )� b�"(bzh2 )℄ jb� k = maxk=1;:::;d ���h[b�"(bzh1 )℄kk � [b�"(bzh2 )℄kki jb���� (2.23a)and ���h[b�"(bzh1 )℄kk � [b�"(bzh2 )℄kki jb����� ���h[b�"(bzh1 )℄kk � [b�"(bzh1;2)℄kki jb����+ ���h[b�"(bzh1;2)℄kk � [b�"(bzh2 )℄kki jb����= ���� 1L00"(�1) � 1L00"(�)����+ ���� 1L00"(�) � 1L00"(�2) ���� ; (2.23b)8



where zh1;2 2 Sh with zh1;2(pj0) = zh2 (pj0) and zh1;2(pjk) = zh1 (pjk), �i lies between zhi (pj0)and zhi (pjk), i = 1; 2, and � lies between zh1 (pjk) and zh2 (pj0).We now show that���� 1L00"(�1) � 1L00"(�)���� � "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j ; (2.24)for zh1 (pj0) 6= zh2 (pj0). If zh1 (pj0) = zh2 (pj0), then � = �1 and (2.24) is trivially true.Otherwise let 
, lying between zh1 (pj0) and zh2 (pj0), be su
h that1L00"(
) = zh2 (pj0)� zh1 (pj0)L0"(zh2 (pj0))� L0"(zh1 (pj0))and so[zh2 (pj0)� zh1 (pj0)℄L00"(
) = [zh2 (pj0)� zh1 (pjk)℄L00"(�) + [zh1 (pjk)� zh1 (pj0)℄L00"(�1) : (2.25)It holds that either(i) jzh1 (pjk)� zh1 (pj0)j+ jzh1 (pjk)� zh2 (pj0)j = jzh1 (pj0)� zh2 (pj0)j (2.26a)or (ii) jzh1 (pj0)� zh2 (pj0)j+ jzh1 (pjk)� zh2 (pj0)j = jzh1 (pjk)� zh1 (pj0)j (2.26b)or (iii) jzh1 (pjk)� zh1 (pj0)j+ jzh1 (pj0)� zh2 (pj0)j = jzh1 (pjk)� zh2 (pj0)j : (2.26
)In 
ase (i) we have on noting L00"(s) = [max(s; ")℄�1 that���� 1L00"(�1) � 1L00"(�)���� � j�1 � �j � jzh1 (pj0)� zh2 (pj0)j : (2.27)For 
ase (ii) it follows from (2.25) that(zh1 (pjk)� zh1 (pj0)) � 1L00"(�) � 1L00"(�1)� = (zh2 (pj0)� zh1 (pj0)) L00"(
)L00"(�1) � 1L00"(�) � 1L00"(
)� ;and hen
e we have that���� 1L00"(�1) � 1L00"(�)���� � L00"(
)L00"(�1) j� � 
jjzh1 (pjk)� zh1 (pj0)j jzh1 (pj0)� zh2 (pj0)j� "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j : (2.28)For 
ase (iii) we pro
eed similarly to end up with���� 1L00"(�1) � 1L00"(�)���� � L00"(
)L00"(�) j�1 � 
jjzh1 (pjk)� zh2 (pj0)j jzh1 (pj0)� zh2 (pj0)j� "�1 max("; jzh1 (pj0)j; jzh2 (pj0)j) jzh1 (pj0)� zh2 (pj0)j : (2.29)Hen
e, 
ombining (2.26a{
){(2.29), we have shown the desired result (2.24). In a similarway we �nd that���� 1L00"(�2) � 1L00"(�)���� � "�1 max("; jzh1 (pjk)j; jzh2 (pjk)j) jzh1 (pjk)� zh2 (pjk)j : (2.30)Combining (2.23a,b), (2.24) and (2.30) yields the desired result (2.22). ut9



Remark. 2.1. The bound (2.22) is not pessimisti
. For example, 
onsider d = 1,zh2 (pj0) = ", zh1 (pj1) = zh2 (pj1) = 1 and zh1 (pj0) = "+ 
 with 
 2 (0; 1� "). Then[�"(zh1 )� �"(zh2 )℄ j(pj0 ;pj1) = 1� "ln " � 1� ("+ 
)ln("+ 
) = (1� ") ln(1 + "�1
) + 
 ln "ln("+ 
) ln "� (ln ")�2"�1
 for 
 � "� 1 :For any " 2 (0; 1), let �" 2 C0;1(R) be su
h that�"(s) := [s� "℄+ + " 8 s 2 R; where [s℄+ := maxfs; 0g;=) �"(s)� s 2 [0; "℄ 8 s 2 R�0: (2.31)Lemma. 2.2. Let the assumptions (A) hold. Then for any given " 2 (0; 1) the fun
tion�" : Sh ! [L1(
)℄d�d is su
h that for all zh 2 Sh and � 2 T hmaxx2� kf�"(zh)� �h[�"(zh)℄ Ig(x)k � h� jr�h[�"(zh)℄ j� j; (2.32)where I is the d� d identity matrix.Proof. Adopting the notation of (2.8), we have from (2.9) and (2.5) thatmaxx2� kf�"(zh)� �h[�"(zh)℄ Ig(x)k2 = maxbx2b� kfb�"(bzh)� b�h[�"(bzh)℄ Ig(bx)k2= maxbx2b� � maxk=1;:::;d j [b�"(bzh)℄kk � b�h[�"(bzh)℄(bx) j2�� h2� jbrb�h[�"(bzh)℄ jb� j2 = h2� jr�h[�"(zh)℄ j� j2;where we have noted that [b�"(bzh)℄kk = b�h[�"(bzh)℄(b�(k)) � �h[�"(zh)℄(�(k)) with �(k) �R�b�(k) 2 � for some point b�(k) 2 b�. Hen
e we obtain the desired result (2.32). utIn order to derive upper and lower bounds on fUn" ; V n" gNn=1 we formulate the followings
alar problems.(P �M) For n � 1, let fUnM ;VnMg 2 R�0 �R�0 be su
h thatUnM�Un�1M�n + g(UnM ;Vn�1m ) = 0; (2.33a)VnM�Vn�1M�n = � g(UnM ;Vn�1M ); (2.33b)(P �m) For n � 1, let fUnm;Vnmg 2 R�0 �R�0 be su
h thatUnm�Un�1m�n + g(Unm;Vn�1M ) = 0; (2.34a)Vnm�Vn�1m�n = � g(Unm;Vn�1m ); (2.34b)where U0M ; U0m; V0M ; V0m 2 R�0 are su
h that for all h > 0 and for all " 2 (0; 1)U0M � U0" (x) � U0m and V0M � V 0" (x) � V0m 8 x 2 
 : (2.35)10



Lemma. 2.3. Let the assumptions (1.3) on g(�; �) hold. Let U0M ; U0m; V0M ; V0m satisfy(2.35). Then for all time partitions f�ngNn=1, there exists a unique solution fUnm; Vnm; UnM ;VnMgNn=1 to (P �m) and (P �M), respe
tively. Furthermore, it holds for all n � 1 thatUn�1M � UnM � Unm and Un�1m � Unm � 0 ; (2.36a)VnM � Vn�1M and VnM � Vnm � Vn�1m � 0 : (2.36b)Proof. We pro
eed by indu
tion. LetUn�1M � Un�1m � 0 and Vn�1M � Vn�1m � 0; (2.37)whi
h is true for n = 1 on noting (2.35). Existen
e and uniqueness of UnM ; VnM ; Unm; Vnmsolving (2.33a,b) and (2.34a,b) follow immediately from our assumptions (1.3) on g(�; �).Moreover, it follows from (2.37), (2.33a), (2.34a) and (1.3) thatUnM + �n g(UnM ;Vn�1m ) = Un�1M � Un�1m = Unm + �n g(Unm;Vn�1M )� Unm + �n g(Unm;Vn�1m ) ; (2.38)and hen
e the desired result (2.36a). It follows from (2.37), (2.33b), (2.34b), (2.36a) and(1.3) that VnM = Vn�1M + �n � g(UnM ;Vn�1M ) � Vn�1m + �n � g(Unm;Vn�1m ) = Vnm ; (2.39)and hen
e the desired result (2.36b). Therefore by indu
tion the results (2.36a,b) holdfor all n � 1. utTheorem. 2.1. Let the assumptions (A) hold, g(�; �) satisfy (1.3), and Un�1" ; V n�1" 2 Kh.Then for all " 2 (0; 1) and for all h, �n > 0 there exists a solution fUn" ; V n" g 2 Kh �Khto the n-th step of (Ph;�" ). Furthermore Un" is unique.Hen
e for all " 2 (0; 1), h > 0 and for all time partitions f�ngNn=1, there exists asolution fUn" ; V n" gNn=1 of (Ph;�" ). In addition if U0M ; U0m; V0M ; V0m satisfy (2.35), then itfollows that for all n � 0U0M � UnM � Un" (x) � Unm � 0 8 x 2 
; (2.40a)VnM � V n" (x) � Vnm � V0m � 0 8 x 2 
 (2.40b)and (� Un" + V n" ; 1)h = (� U0" + V 0" ; 1)h : (2.41)Proof. For any W �Pj2J Wj �j 2 Sh we de�ne W := (W1; � � �;WJ )T 2 RJ . We thenintrodu
e F nU : RJ �RJ ! RJ de�ned by[F nU (W;Z)℄j := (W;�j)h + �n 
 (rW;r�j) + �n (g(W;Z); �j)h 8 j 2 J : (2.42)11



On noting (2.1), (1.3) and (2.11), it follows for every �xed Z 2 RJ that F nU (W;Z) 
anbe written as AW +'(W ) with A 2 RJ�J being anM-matrix and ' : RJ ! RJ beinga 
ontinuous isotone diagonal mapping. Hen
e for every �xed Z 2 RJ , we have thatF nU (�; Z) : RJ ! RJ is an inverse isotone homeomorphism; (2.43)see e.g. Ortega and Rheinboldt (1970, x13.5.6)Given Un�1" ; V n�1" 2 Kh, and hen
e Un�1" ; V n�1" 2 RJ�0, (2.12a) 
an be rewritten as:Find Un" 2 RJ su
h that F nU (Un" ; V n�1" ) = XnU 2 RJ�0 ; (2.44)where [XnU ℄j := (Un�1" ; �j)h for all j 2 J . On noting (2.44), (2.43) and that F nU (0; V n�1" ) =0, we have existen
e and uniqueness of Un" 2 Kh solving (2.12a).Given Un" ; V n�1" 2 Kh, to prove the existen
e of V n" we will make use of the Brouwer�xed point theorem, see e.g. Renardy and Rogers (1992, Theorem 9.36). Let eF nV : RJ !RJ be de�ned by[ eF nV (Z)℄j := (Z; �j)h + �n � (Un" �"(Z)rZ;r�j) 8 j 2 J : (2.45)(2.12b) 
an then be rewritten as: Find V n" 2 RJ su
h thateF nV (V n" ) = XnV 2 RJ�0 ; (2.46)where [XnV ℄j := (V n�1" + �n � g(Un" ; V n�1" ); �j)h for all j 2 J . It follows from (2.22) thateF nV is 
ontinuous and hen
e it is suÆ
ient to show that eF nV is 
oer
ive. On noting (2.21)and that Un" 2 Kh, we have thatXj2J [ eF nV (Z)℄j Zj � jZj2h + �n � (Un" �"(Z)rZ;rZ) � jZj2h 8 Z 2 Sh : (2.47)Hen
e the 
oer
iveness of eF nV follows from (2.47), (2.17) and (2.2). Therefore, on notingthe aforementioned theorem and (2.46), we have existen
e of V n" 2 Sh solving (2.12b).The fa
t that V n" 2 Kh will be demonstrated below.For the remainder of the proof we pro
eed by indu
tion. We assume that the bounds(2.40a,b) hold for n repla
ed by n� 1. On setting 1 := (1; � � �; 1)T 2 RJ , it follows from(2.42), (2.33a), (2.34a), (2.44), (1.3) and (2.40a,b) with n repla
ed by n � 1 that for allj 2 J[F nU (UnM 1;Vn�1m 1)� F nU (Un" ;Vn�1m 1)℄j =(Un�1M � Un�1" ; �j)h + �n (g(Un" ; V n�1" )� g(Un" ;Vn�1m ); �j)h � 0 ; (2.48a)[F nU (Un" ;Vn�1M 1)� F nU (Unm 1;Vn�1M 1)℄j =(Un�1" � Un�1m ; �j)h + �n (g(Un" ;Vn�1M )� g(Un" ; V n�1" ); �j)h � 0 : (2.48b)Noting (2.48a,b) and (2.43) we obtain that the desired bounds (2.40a) hold for n.12



Let F nV : RJ ! RJ be de�ned by[F nV (Z)℄j := (Z; �j)h + �n� (Un" �"(V n" )rZ;r�j) 8 j 2 J : (2.49)Hen
e on noting (2.49) and (2.46), the solution V n" 2 Sh of (2.12b) is su
h thatF nV (V n" ) = XnV 2 RJ�0 : (2.50)Adopting the notation of (2.8), we have for all � 2 T h, on noting that RT� � R�1� , thatZ� Un" (r�k)T�"(V n" )r�j dx � dXi=1 Zb� bUn" [b�"(bV n" )℄ii �b�j�bxi �b�k�bxi dbx 8 j; k 2 J: (2.51)It follows from (2.51), Un" 2 Kh, (2.9), (2.5) and (2.10) that F nV (Z) 
an be written asBZ with B 2 RJ�J being anM-matrix. Hen
e F nV (�) : RJ ! RJ is an inverse isotonehomeomorphism, and we dedu
e immediately from (2.50) and F nV (0) = 0 that V n" 2 Kh.It follows from (2.49), (2.33b), (2.34b), (2.50), (1.3), (2.40a) and the bounds (2.40b)with n repla
ed by n� 1 that for all j 2 J[F nV (VnM 1)� F nV (V n" )℄j =(Vn�1M � V n�1" ; �j)h + �n � (g(UnM ;Vn�1M )� g(Un" ; V n�1" ); �j)h � 0 ; (2.52a)[F nV (V n" )� F nV (Vnm 1)℄j =(V n�1" � Vn�1m ; �j)h + �n � (g(Un" ; V n�1" )� g(Unm;Vn�1m ); �j)h � 0 : (2.52b)On noting that F nV is inverse isotone and (2.52a,b), we obtain that the desired bounds(2.40b) hold for n. As the bounds (2.40a,b) hold for n = 0, see (2.35), it follows byindu
tion that they hold for all n � 0Finally, we note on 
hoosing � � 1 in (2.12a,b) that (� Un" + V n" ; 1)h = (� Un�1" +V n�1" ; 1)h and thus the desired result (2.41) holds. utLemma. 2.4. Let the assumptions (A) hold, g(�; �) satisfy (1.4), and U0M ; U0m; V0M ; V0msatisfy (2.35). Then for all " 2 (0; 1); h > 0 and for all time partitions f�ngNn=1, asolution fUn" ; V n" gNn=1 of (Ph;�" ) is uniformly bounded. In parti
ular, it holds for all n � 0that U0M � Un" (x) � 0 and VM � V n" (x) � V0m 8 x 2 
; (2.53a)where VM := exp(� f(U0M)T )V0M : (2.53b)Proof. From (2.33b), (1.4) and (2.36a,b), it follows for all n � 1 thatVnM = Vn�1M + �n � g(UnM ;Vn�1M ) � Vn�1M + �n � g(U0M ;Vn�1M )= Vn�1M + �n � f(U0M)Vn�1M � exp(�n � f(U0M))Vn�1M � exp(� f(U0M) tn)V0M : (2.54)The desired result (2.53a,b) then follows from (2.40a,b) and (2.54). ut13



Theorem. 2.2. Let the assumptions of Lemma 2.4 hold. Then for all " 2 (0; 1); h > 0and for all time partitions f�ngNn=1, a solution fUn" ; V n" gNn=1 of (Ph;�" ) satis�esNXn=1 �n ���Un" �Un�1"�n ���2h + 
 max1�n�N jUn" j21 + 
 NXn=1 jUn" � Un�1" j21 + NXn=1 jV n" � V n�1" j2h+ � NXn=1 �n(Un" �"(V n" )rV n" ;rV n" ) + � NXn=1 �n(Un" rV n" ;rV n" ) + max1�n�N(L"(V n" ); 1)h+ NXn=1 �n 


V n" �V n�1"�n 


2�1 � C jU0" j21 + C(U0M ;V0M ; T ) : (2.55)Proof. Choosing � � (Un" � Un�1" ) in (2.12a) yields that�n ���Un" �Un�1"�n ���2h + 
 (rUn" ;r(Un" � Un�1" )) + (g(Un" ; V n�1" ); Un" � Un�1" )h = 0 : (2.56)On noting (1.15), (1.16), (1.4) and (2.53a,b) it follows that�n ���Un" �Un�1"�n ���2h + 
 jUn" j21 + 
 jUn" � Un�1" j21 � 
 jUn�1" j21 + �n jg(Un" ; V n�1" )j2h� 
 jUn�1" j21 + �n C(U0M ;V0M ; T ) : (2.57)Summing (2.57) from n = 1; : : : ; k, for k = 1; : : : ; N , yields the �rst three bounds in(2.55).Choosing � � V n" in (2.12b) and applying (1.16), (1.4) and (2.53a,b) we have that12 jV n" j2h + 12 jV n" � V n�1" j2h + �n � (Un" �"(V n" )rV n" ;rV n" )= 12 jV n�1" j2h + �n � (g(Un" ; V n�1" ); V n" )h� 12 jV n�1" j2h + �n C(U0M ;V0M ; T ) : (2.58)Summing (2.58) from n = 1; : : : ; N yields the fourth and �fth bound in (2.55).Choosing � � �h[L0"(V n" )℄ in (2.12b) and noting (2.6a,b) and (2.5) yields that(L"(V n" )� L"(V n�1" ); 1)h + �n � (Un" rV n" ;rV n" ) � �n � (g(Un" ; V n�1" );L0"(V n" ))h : (2.59)Summing (2.59) from n = 1; : : : ; k, for k = 1 ! N , and noting (1.4), (2.53a,b) and thatL0"(V n" ) � [lnVM ℄+ yields the sixth and seventh bound in (2.55).Finally from (2.3), (2.12b), (2.53a,b), (2.21), (2.17), (2.20), (1.4) and on re
alling from(2.6a) that �" is positive semide�nite we obtain that�V n" �V n�1"�n ; �� = �V n" �V n�1"�n ; Qh��h= �� �Un" �"(V n" )rV n" ;r(Qh�)�+ � �g(Un" ; V n�1" ); Qh��h� C(U0M ) hj[Un" �"(V n" )℄ 12rV n" j0 + jg(Un" ; V n�1" )jhi kQh�k1� C(U0M ;V0M ; T ) hj[Un" �"(V n" )℄ 12rV n" j0 + 1i k�k1 8 � 2 H1(
) (2.60a)14



and hen
e that 


V n" �V n�1"�n 


2�1 � C(U0M ;V0M ; T ) hj[Un" �"(V n" )℄ 12rV n" j20 + 1i : (2.60b)Multiplying (2.60b) by �n, summing from n = 1; : : : ; N , and noting the �fth bound in(2.55) yields the �nal bound in (2.55). utLemma. 2.5. Let u0; v0 2 K \L1(
) and the assumptions (A) hold. On 
hoosing eitherU0" � Qhu0, V 0" � Qhv0 or in the 
ase d = 1 U0" � �hu0, V 0" � �hv0; it follows thatU0" ; V 0" 2 Kh and U0M � supx2
 u0(x), V0M � supx2
 v0(x) satisfying (2.35) are su
h thatfor all h > 0 and " 2 (0; 1) jU0" j21 + C(U0M ;V0M ; T ) � C(T ) : (2.61)Proof. The desired result (2.61) follows immediately from (2.20), (2.15), (2.35) and(2.19). ut3 Convergen
eLet U"(t) := t�tn�1�n Un" + tn�t�n Un�1" t 2 [tn�1; tn℄ n � 1 (3.1a)and U+" (t) := Un" ; U�" (t) := Un�1" t 2 (tn�1; tn℄ n � 1: (3.1b)Using the above notation, and introdu
ing analogous notation for V", and (2.40a,b); then(2.12a,b) 
an be restated as: Find fU"; V"g 2 C([0; T ℄;Kh)�C([0; T ℄;Kh) su
h thatZ T0 h ��U"�t ; ��h + 
 �rU+" ;r�� i dt = � Z T0 (g(U+" ; V �" ); �)h dt8 � 2 L2(0; T ;Sh); (3.2a)Z T0 h ��V"�t ; ��h + � �U+" �"(V +" )rV +" ;r��i dt = � Z T0 (g(U+" ; V �" ); �)h dt8 � 2 L2(0; T ;Sh): (3.2b)Lemma. 3.1. Let u0, v0 2 K \ L1(
), g(�; �) satisfy (1.4) and fT h; U0" ; V 0" ; �; "gh>0 besu
h that(i) either U0" � Qhu0, V 0" � Qhv0 or in the 
ase d = 1 U0" � �hu0, V 0" � �hv0;(ii) 
 and fT hgh>0 ful�l assumption (A), " 2 (0; 1) and �n � C �n�1, n = 2; : : : ; N ;(iii) ", � ! 0 as h! 0. 15



Then there exists a subsequen
e of fU"; V"gh and fun
tionsu 2 L1(
T ) \ L1(0; T ;K) \H1(0; T ;L2(
)) (3.3a)and v 2 f� 2 L1(
T ) : � � 0 a:e: in 
Tg \H1(0; T ; (H1(
))0) (3.3b)su
h that u v 2 L2(0; T ;H1(
)) ; (3.3
)and as h! 0U"; U�" ! u weak-� in L1(
T ); (3.4a)�U"�t ! �u�t weakly in L2(
T ); (3.4b)U"; U�" ! u weak-� in L1(0; T ;H1(
)); (3.4
)U"; U�" ! u strongly in Lp(
T ) and a:e: in 
T ; (3.4d)V"; V �" ! v weak-� in L1(
T ); (3.5a)�V"�t ! �v�t weakly in L2(0; T ; (H1(
))0); (3.5b)f(U+" )V �" ! f(u) v weak-� in L1(
T ); (3.6a)U" V"; U�" V �" ! u v strongly in Lp(
T ) and a:e: in 
T ; (3.6b)U�" V �" ! u v weakly in L2(0; T ;H1(
)); (3.6
)for any p 2 [1;1). In addition it holds that R� [� u(�; t) + v(�; t)℄ = R� [� u0 + v0℄ fora:e: t 2 [0; T ℄.Proof. It follows from the de�nitions (3.1a,b) and the bounds (2.55), as 
; � > 0,together with (2.17), (2.53a,b), assumptions (i) and (ii), and (2.61) thatkU (�)" k2L1(
T ) + kU (�)" k2L1(0;T ;H1(
)) + k�U"�t kL2(
T ) + ��1 kU+" � U�" k2L2(0;T ;H1(
))+ kV (�)" k2L1(
T ) + ��1 kV +" � V �" k2L2(
T ) + k[U+" �"(V +" )℄ 12rV +" k2L2(
T )+ k(U+" ) 12rV +" k2L2(
T ) + k�V"�t kL2(0;T ;(H1(
))0) � C(T ); (3.7)where U (�)" is an abbreviation for \with" and \without" the supers
ripts \+" and \�";similarly, V (�)" . Hen
e on noting (3.7), (3.1a,b), (2.40a,b), (2.41), assumptions (i) and (iii),(2.3) and (2.15) we 
an 
hoose a subsequen
e fU"; V"gh su
h that the 
onvergen
e results(3.3a,b), (3.4a{
) and (3.5a,b) hold and the additional integral 
ondition is satis�ed.The 
onvergen
e result (3.4d) for p = 2 follows immediately on extra
ting a furthersubsequen
e from (3.4b,
), (1.14a), the fourth bound in (3.7) and the assumption (iii).The result (3.4d) for any p 2 [1;1) then follows from the a:e: 
onvergen
e and (3.3a).The a:e: 
onvergen
e (3.4d), together with (1.4) and (3.3a) imply for any p 2 [1;1) thatf(u) 2 L1(
T ) and f(U (�)" )! f(u) a:e: in 
T and strongly in Lp(
T ): (3.8)Combining (3.8) and (3.5a) yields the desired result (3.6a).Similarly to the proof of (3.6a), we have thatU" V"; U�" V �" ! u v weak-� in L1(
T ): (3.9)16



To prove (3.6b), we introdu
eW n" := Un" V n" 62 Sh n = 0; : : : ; N; (3.10)and de�ne W (�)" similarly to U (�)" as in (3.1a,b). It then follows from (3.10) and (3.7) forany � 2 L2(0; T ;W 1;q(
)), with q = 2 if d = 1 and q > 2 if d = 2, that����Z T0 ��W"�t ; �� dt���� = ����Z T0 �V +" �U"�t + U�" �V"�t ; �� dt����� C � k�U"�t kL2(
T )k�kL2(
T ) + k�V"�t kL2(0;T ;(H1(
))0) kU�" �kL2(0;T ;H1(
))�� C k�kL2(0;T ;W 1;q(
)) ; (3.11)where we have noted from (1.13) thatkr(U�" �)kL2(
T ) � kU�" kL1(0;T ;H1(
))k�kL2(0;T ;L1(
)) + kU�" kL1(
T )k�kL2(0;T ;H1(
))� C k�kL2(0;T ;W 1;q(
)) : (3.12)We have from (3.10), (3.1a,b) and (3.7) thatkrW"k2L2(
T ) � krW+" k2L2(
T ) + krW�" k2L2(
T )� 2hkV +" rU+" k2L2(
T ) + kV �" rU�" k2L2(
T )+ kU+" rV +" k2L2(
T ) + kU�" rV �" k2L2(
T )i� C h1 + k(U�" ) 12rV �" k2L2(
T )i � C; (3.13)where we have noted from (2.55), (i), (2.61), the time step 
ontrol (ii), (2.20) and (2.15)that k(U�" ) 12rV �" k2L2(
T ) � NXn=1 �nj(Un�1" ) 12rV n�1" j20 � N�1Xn=0 �n+1j(Un" ) 12rV n" j20� C jrV 0" j20 + C N�1Xn=1 �nj(Un" ) 12rV n" j20 � C: (3.14)Combining (3.11), (3.14) and (3.7) yields thatkW"kL2(0;T ;H1(
)) + k�W"�t kL2(0;T ;(W 1;q(
))0) � C : (3.15)The bounds (3.15) and (1.14a) imply the existen
e of a subsequen
e fW"gh su
h thatW" ! w strongly in L2(
T ); weakly in L2(0; T ;H1(
)) : (3.16)Next we note from (3.10), (3.1a,b), (3.7) and (iii) thatkW" �W�" kL2(
T ) + kU" V" �W�" kL2(
T ) � C kU+" � U�" kL2(
T ) + C kV +" � V �" kL2(
T )! 0 as h! 0 : (3.17)Combining (3.16), (3.17), (3.9) and (3.10) yields the desired result (3.6b) for p = 2 onextra
ting a further subsequen
e. The result (3.6b) for any p 2 [1;1) then follows fromthe a:e: 
onvergen
e and (3.3a,b). Finally, the results (3.3
) and (3.6
) follow from (3.16),(3.13), (3.10) and (3.6b). ut17



Before proving our 
onvergen
e theorem, we make a �nal assumption on f(�) and 
:f 2 C0;1[0;U0M ℄ and 
 is 
onvex: (3.18)It is easily established from (3.18) and (2.1) thatj�h[f(�)℄j1 � Cf j�j1 8 � 2 Kh with maxx2
 �(x) � U0M ; (3.19)where Cf is the Lips
hitz 
onstant of f .Theorem. 3.1. Let the assumptions of Lemma 3.1 and (3.18) hold. In addition letu0 2 H2(
) if d = 2. Then there exist fun
tions u and v satisfying (3.3a{
) andu 2 L1(0; T ;Hd(
)) \ C(
T ); rv 2 L2lo
(fu > 0g); (3.20)where fu > 0g � 
T is the open set de�ned byfu > 0g := f(x; t) 2 
T : u(x; t) > 0g; (3.21)and there exists a subsequen
e of fU"; V"gh satisfying (3.4a{d), (3.5a{d) and as h! 0V"; V �" ! v strongly in Lp(fu > 0g); p 2 [1;1);and a:e: in fu > 0g; (3.22a)U+" �"(V +" )rV +" !Hfu>0g u vrv weakly in L2(
T ); (3.22b)where Hfu>0g is the 
hara
teristi
 fun
tion of the set fu > 0g.Moreover u and v ful�l u(�; 0) = u0(�), v(�; 0) = v0(�) andZ T0 � ��u�t ; ��+ 
 (ru;r�) � dt = � Z T0 (f(u) v; �) dt8 � 2 L2(0; T ;H1(
)); (3.23a)Z T0 
�v�t ; �� dt+ � Zfu>0g u vrv :r� dx dt = � Z T0 (f(u) v; �) dt8 � 2 L2(0; T ;H1(
)); (3.23b)where h�; �i denotes the duality pairing between (H1(
))0 and H1(
).Proof. For any � 2 L2(0; T ;H2(
)), we 
hoose � � �h� in (3.2a) and now analyse thesubsequent terms. On noting (2.14) and (3.7), we have that���� Z T0 �rU+" ;r(I � �h)�� dt ���� � C h kU+" kL2(0;T ;H1(
))k�kL2(0;T ;H2(
))� C h k�kL2(0;T ;H2(
)) 8 � 2 L2(0; T ;H2(
)): (3.24)18



It follows from (3.24) and (3.4
) thatZ T0 (rU+" ;r(�h�) ) dt! Z T0 (ru;r�) dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.25)We have from (2.18) and (2.14) that for any Y 2 L2(0; T ;Sh) and � 2 L2(0; T ;H2(
))���� Z T0 h �Y; �h��h � (Y; �) i dt ���� � Z T0 h j �Y; �h��h � �Y; �h�� j+ j �Y; (I � �h)�� j i dt� C h kY kL2(
T ) � k�h�kL2(0;T ;H1(
)) + h k�kL2(0;T ;H2(
))�� C h kY kL2(
T ) k�kL2(0;T ;H2(
)) : (3.26)Combining (3.26) for Y � �U"�t , (3.7) and (3.4b) yields thatZ T0 ��U"�t ; �h��h dt! Z T0 ��u�t ; �� dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.27)It follows from (1.13) that���� Z T0 � (I � �h)[f(U+" )V �" ℄; �� dt ���� � C k(I � �h)[f(U+" )V �" ℄kL2(0;T ;L1(
)) k�kL2(0;T ;H2(
))8 � 2 L2(0; T ;H2(
)): (3.28)Next we note from (3.7), (2.16), (2.18), (2.53a) and (3.19) thatk(I � �h)[f(U+" )V �" ℄kL2(0;T ;L1(
))� kV �" (I � �h)[f(U+" )℄kL2(0;T ;L1(
)) + k(I � �h)[V �" �h(f(U+" ))℄kL2(0;T ;L1(
))� C h k�h[f(U+" )℄kL2(0;T ;H1(
)) � C h [1 + kU+" kL2(0;T ;H1(
))℄ � C h : (3.29)Combining (3.26) for Y � �h[f(U+" )V �" ℄, (3.7), (3.28), (3.29) and (3.6a) yields thatZ T0 (f(U+" )V �" ; �h�)h dt! Z T0 (f(u) v; �) dt as h! 0; 8 � 2 L2(0; T ;H2(
)): (3.30)It follows from (3.2a), (1.4), (3.25), (3.27), (3.30), the denseness of L2(0; T ;H2(
)) inL2(0; T ;H1(
)) and (3.7) that (3.23a) holds.On noting (3.3a{
) we have that u jrvj 2 L2(
T ), whi
h together with (1.4) and (3.18)yields that kr(f(u) v)kL2(
T ) = kf 0(u) vru+ f(u)rvkL2(
T )� Cf kvrukL2(
T ) + Cf kurvkL2(
T ) � C : (3.31)Combining (3.31), (1.4) and (3.3a,b) we obtain that f(u) v 2 L2(0; T ;H1(
)). A simpleenergy estimate for (3.23a) then yields for d = 2, on re
alling our assumptions on 
and the initial data, that u 2 L1(0; T ;H2(
)). This 
an be easily seen by 
hoosing� � �Hft?>tg�(�u�t ) in (3.23a) for all t? 2 (0; T ) and performing integration by parts in19



spa
e. As usual su
h a pro
edure 
an be justi�ed via a Galerkin approximation. Hen
ethe �rst desired result on u in (3.20) follows on noting (3.3a). The se
ond u result in (3.20)then follows immediately from the �rst, (3.3a), the 
ompa
t embedding Hd(
) ,! C(
)and (1.14b). Finally, the v result in (3.20) follows from the u result and the fa
t thatu jrvj 2 L2(
T ).For any � 2 H1(0; T ;H2(
)) we 
hoose � � �h� in (3.2b) and now analyse thesubsequent terms. Firstly on noting (2.18), (2.14), (1.13) in time and (3.7), we have forall � 2 H1(0; T ;H2(
)) that���� Z T0 h ��V"�t ; �h��h � ��V"�t ; �h�� i dt ����= ����� Z T0 �V"; �(�h�)�t �h dt + �V"(�; T ); �h�(�; T )�h � �V"(�; 0); �h�(�; 0)�h+ Z T0 �V"; �(�h�)�t � dt� �V"(�; T ); �h�(�; T )�+ �V"(�; 0); �h�(�; 0)� ����� C h kV"kL1(
T ) k�kH1(0;T ;H2(
)) � C h k�kH1(0;T ;H2(
)) : (3.32)Similarly to (3.24), it follows from (2.14) and (3.7) that���� Z T0 ��V"�t ; (I � �h)�� dt ���� � C h k�V"�t kL2(0;T ;(H1(
))0) k�kL2(0;T ;H2(
))� C h k�kL2(0;T ;H2(
)) 8 � 2 L2(0; T ;H2(
)): (3.33)Combining (3.32), (3.33) and (3.5b) yields thatZ T0 ��V"�t ; �h��h dt! Z T0 h�v�t ; �i dt as h! 0; 8 � 2 H1(0; T ;H2(
)): (3.34)The desired result (3.22a) follows immediately from (3.6b), (3.4d), (3.21) and (3.3b).It follows from (2.21) and (3.7) thatkU+" �"(V +" )rV +" kL2(
T ) � C k[U+" �"(V +" )℄ 12rV +" kL2(
T ) � C : (3.35)In view of (3.35) and (2.14), we dedu
e for all � 2 L2(0; T ;H2(
)) that���� Z T0 �U+" �"(V +" )rV +" ;r(I � �h)�� dt ���� � C h k�kL2(0;T ;H2(
)) : (3.36)Furthermore, we have on noting (3.35) that there exists a limit z 2 L2(
T ) su
h that forall � 2 L2(0; T ;H1(
))Z T0 �U+" �"(V +" )rV +" ;r�� dt ! Z T0 (z;r�) dt as h! 0: (3.37)20



In the remaining part of the proof we will establish that z � Hfu>0g u vrv. It followsfrom (2.21), (3.7), (1.13) and (3.4d) that for all � 2 L1(0; T ;W 1;1(
))���� Z
T (1�Hfu>0g)U+" �"(V +" )rV +" :r� dx dt ����� C k[U+" �"(V +" )℄ 12 rV +" kL2(
T ) �Z
T (1�Hfu>0g) (U+" � u) jr�j2 dx dt� 12� C kU+" � uk 12L2(
T ) k�kL1(0;T ;W 1;1(
)) ! 0 as h! 0 : (3.38)It follows from (3.37) and (3.38) that z � 0 a:e: on 
T n fu > 0g. Next we note from(3.7), (3.4
,d) and (3.6b,
) that for any � 2 L1(0; T ;W 1;1(
))Z
T (U+" )3r[(V +" )2℄:r� dx dt= 2 Z
T [U+" (U+" V +" )r(U+" V +" )� (U+" V +" )2rU+" ℄:r� dx dt! 2 Z
T [ u (u v)r(u v)� (u v)2ru ℄:r� dx dt= Z
T u3r(v2):r� dx dt as h! 0 : (3.39)Furthermore, we have on noting (3.7) that for any � 2 L1(0; T ;W 1;1(
))���� Z
T (U+" )3 [�"(V +" )� V +" I℄rV +" :r� dx dt ����� C k(U+" ) 12 rV +" kL2(
T ) k�kL1(0;T ;W 1;1(
)) �Z
T (U+" )5 k�"(V +" )� V +" Ik2 dx dt� 12� C k�kL1(0;T ;W 1;1(
)) k(U+" ) 12 k�"(V +" )� V +" Ik kL2(
T ): (3.40)It follows from (3.7), (2.32), (2.13), (2.17), (2.40a,b), (2.31) and assumption (iii) thatk(U+" ) 12 k�"(V +" )� V +" Ik kL2(
T )� k(U+" ) 12 k�"(V +" )� �h[�"(V +" )℄ Ik kL2(
T ) + k(U+" ) 12 k( �h[�"(V +" )℄� V +" ) Ik kL2(
T )�  Z T0 X�2T h h2� j(U+" ) 12 r�h[�"(V +" )℄j20;� dt! 12 + C k�h[�"(V +" )℄� V +" kL2(
T )�  Z T0 X�2T h h2� j(U+" ) 12 rV +" j20;� dt! 12 + C k�h[�"(V +" )℄� V +" kL2(
T )� C h k(U+" ) 12 rV +" kL2(
T ) + C k�h[�"(V +" )� V +" ℄kL2(
T )� C ( h+ " ) ! 0 as h! 0 : (3.41)21



Hen
e we have on noting (3.4d), (3.35), (3.37), (3.40), (3.41) and (3.39) that for any� 2 L1(0; T ;W 1;1(
))2 Z
T u2 z:r� dx dt  2 Z
T (U+" )3 �"(V +" )rV +" :r� dx dt= 2 Z
T (U+" )3 V +" rV +" :r� dx dt + 2 Z
T (U+" )3 [�"(V +" )� V +" I℄rV +" :r� dx dt! Z
T u3r(v2):r� dx dt : (3.42)Therefore it follows from (3.42) that2 u2 z = u3r(v2) a:e: on 
T =) z = 12 ur(v2) a:e: on fu > 0g : (3.43)Combining (3.43), (3.36), (3.37) and (3.38), and noting (1.13) yields thatZ T0 �U+" �"(V +" )rV +" ;r(�h�)� dt ! Zfu>0g u vrv:r� dx dt 8 � 2 H1(0; T ;H3(
))(3.44)and the desired result (3.22b). It follows from (3.2b), (1.4), (3.44), (3.34), (3.30), thedenseness of H1(0; T ;H3(
)) in L2(0; T ;H1(
)) and (3.7) that (3.23b) holds.Finally, it follows from (3.4b,
), (3.5a,b) and (1.14b) thatU" ! u in C([0; T ℄;L2(
)) and V" ! v in C([0; T ℄; (H1(
))0) : (3.45)Furthermore the assumptions (i), (2.15) and (2.20) yield thatU0" ! u0 and V 0" ! v0 strongly in L2(
) : (3.46)Combining (3.45) and (3.46) we obtain that u(�; 0) = u0(�), v(�; 0) = v0(�). utRemark. 3.1. For initial data u0; v0 2 H2(
), it is 
onvenient in pra
ti
e to 
hooseU0" � �hu0 and V 0" � �hv0 for d = 2. We note that all of the results in the aboveLemmas and Theorems obviously remain true on noting (2.14). Also, in this 
ase we donot require (2.20) for (2.61), (3.14) and (3.46) to hold. Hen
e we only need the quasi-uniformity assumption in order to obtain (2.60a,b). However, we 
an repla
e this with thefar milder assumption that fT hgh>0 is a regular partitioning at the expense of a minimumtime step 
onstraint as in Barrett et al. (1998). Introdu
ing G : (H1(
))0 ! H1(
) andGh : C(
)! Sh su
h that(rGz;r�) + (Gz; �) = hz; �i 8 � 2 H1(
) ; (3.47a)(rGhz;r�) + (Ghz; �) = (z; �)h 8 � 2 Sh : (3.47b)It is easily established from fT hgh>0 being a regular partitioning, ellipti
 regularity, as 
is 
onvex polygonal if d = 2, and (2.18) thatk(G � Gh)zhk1 � C h kzhk0 8 zh 2 Sh : (3.48)22



Then testing (2.12b) with � � Gh �V"�t we obtain, similarly to (2.60a), thatkGh �V"�t kL2(0;T ;H1(
)) � C (3.49)on noting (2.61). Combining (3.48), (3.49) and noting the fourth bound in (2.55), (2.17)and (3.1a), it follows thatkG �V"�t kL2(0;T ;H1(
)) � k(G � Gh)�V"�t kL2(0;T ;H1(
)) + kGh �V"�t kL2(0;T ;H1(
))� C h k�V"�t kL2(
T ) + C � C (�� 12min h + 1) � C ; (3.50)if the mild time step 
onstraint C h2 � �min := minn=1;:::;N �n is satis�ed.Remark. 3.2. If instead of (1.2) b(�; �) was just degenerate in s, i.e. b(r; s) := � s, then(1.1b) would be a porous medium equation with a rea
tion term. A natural dis
retizationof this would then be (2.12b) with the se
ond term on the left-hand side repla
ed by12� �r�h[(V n" )2℄;r��, see e.g. No
hetto and Verdi (1988). This would suggest that anatural dis
retization of (1.1b) with b(�; �) de�ned by (1.2) would be�V n" �V n�1"�n ; ��h + 12 � �Un" r�h[(V n" )2℄;r�� = � (g(Un" ; V n�1" ); �)h 8 � 2 Sh: (3.51)The approximation (3.51) has two advantages over (2.12b) in that it is a simple matter (a)to establish the existen
e and uniqueness of V n" satisfying (3.51), whereas the uniquenessof V n" satisfying (2.12b) is not guaranteed; (b) to 
onstru
t and prove 
onvergen
e ofglobally 
onvergent iterative methods to solve the nonlinear system (3.51) for V n" , whereas
onvergen
e of algorithms for solving (2.12b) is not guaranteed, see (4.2) below. However,for the approximation (3.51) it does not appear possible to prove a dis
rete analogue of(1.11), the sixth bound in (2.55), whi
h plays su
h a key role in our 
onvergen
e proof.4 Numeri
al ResultsBefore presenting some numeri
al results in both one and two spa
e dimensions, we brie
ystate algorithms for solving the resulting system of algebrai
 equations for fUn" ; V n" g aris-ing at ea
h time level from the approximation (Ph;�" ) in the model 
ase b(r; s) := � r s andg(r; s) := r s. As (2.12a) is independent of V n" , we �rst solve the resulting linear equation�Un" �Un�1"�n ; ��h + 
 (rUn" ;r�) + (Un" V n�1" ; �)h = 0 8 � 2 Sh (4.1)to obtain Un" . Then the nonlinear equation (2.12b) is solved for V n" . In order to a
hievethis, we use the following iterative pro
edure: For k � 1 �nd V n;k" 2 Sh su
h that�V n;k" �V n�1"�n ; ��h + � (Un" �"(V n;k�1" )rV n;k" ;r�) = � (Un" V n�1" ; �)h 8 � 2 Sh; (4.2)where V n;0" � V n�1" . (4.2) is the natural extension of the iterative pro
edure proposed inGr�un and Rumpf (2000) for solving a �nite element approximation of (1.8). As (4.2) is23



linear, existen
e of V n;k" follows from uniqueness; and this is easily established on noting(2.6a) and (2.40a). Hen
e the iteration (4.2) is well de�ned. We adopted the stopping
riterion kV n;k" � V n;k�1" k0;1 < tol (4.3)with tol = 10�8 and then set V n" � V n;k" . Although we are unable to show 
onvergen
e ofthis iteration, we observed good 
onvergen
e properties in pra
ti
e.The linear systems (4.1) and (4.2), for ea
h k, 
an be solved eÆ
iently using a 
onjugategradient algorithm. As the iteration in general took only a few steps to ful�l the stopping
riterion, the analogue of (4.3) for su

essive iterates, we did not employ a pre
onditioner.We note for later purposes that (4.2) 
an easily be adapted to handle di�usion 
oef-�
ients of the form b(r; s) := b1(r) s with b1(r) 2 C(R�0) and b1(r) � 0. In this 
ase theterm � (Un" �"(V n;k�1" )rV n;k" ;r�) in (4.2) is repla
ed by (�h[b1(Un" )℄ �"(V n;k�1" )rV n;k" ;r�).In the simpler 
ase that b(r; s) := b1(r), we solve the following linear system at ea
h timelevel: �V n" �V n�1"�n ; ��h + (�h[b1(Un" )℄rV n" ;r�) = � (Un" V n�1" ; �)h 8 � 2 Sh : (4.4)For the initial pro�les we 
hoseeither (i) u0(x) � u0max; v0(x) � v0max exp(�A jxj2) (4.5a)or (ii) u0(x) � u0max; v0(x) � v0R(jxj) := v0max2 [1� tanh(B(jxj � x0))℄ ; (4.5b)and set U0" � u0 and V 0" � �hv0 for simpli
ity as v0 2 H2(
), see Remark 3.1.4.1 Numeri
al Results for d = 1We 
onsider a uniform partitioning of 
 = (�L; L) with mesh points pj = �L+(j � 1)h,j = 1; : : : ;J , where h = 2LJ�1 .As no exa
t solution to (P) is known, a 
omparison between the solutions of (Ph;�" )on a 
oarse mesh, fU"; V"g, with those on a �ne mesh, fbu; bvg, was made. The dataused in ea
h experiment on the 
oarse meshes were L = 10, T = 50, �n � � = 1:25 h," = 1:25 � 10�3 h, where J = 2k + 1 (k = 6; : : : ; 10), 
 = � = � = 1 and A = 1,v0max = u0max = 0:71 for the initial pro�les in (4.5a). The data were the same for the �nemesh ex
ept J = 213+1. The 
omputed error bounds are given in the table below, whereit appears that the L1(
T ) error for both u and v is 
onverging at the rate O(h). A plotof the respe
tive solutions 
an be seen in Figure 1.For the remainder of the results reported in this subse
tion we �xed �n � � = 10�3," = 10�5, J = 210 + 1 and 
 = � = 1. For L = 10 and the same initial data as abovewe performed experiments to study the behaviour of the solutions. We observed that the
omputed solutions U"(x; t) and V"(x; t) approa
h steady states for t suÆ
iently large;24
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#J = 1025Figure 1: U"(x; 50) and V"(x; 50) for J = 2k + 1 (k = 6; : : : ; 10) and bu(x; 50); bv(x; 50).see Figure 2, where we plot U"(x; tn) and V"(x; tn) for tn = 0; 10; 100; 200. Note thatU"(x; t) � 0 and V"(x; t) � bV (x) for t � 100, whi
h is due to the degenera
y of b(�; �).This means in parti
ular, that the V" solution is \frozen in" before a stable pro�le isestablished, so that no travelling wave is 
reated.
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V(x,t)Figure 2: U"(x; tn) and V"(x; tn) for tn = 0; 10; 100; 200.For larger 
hoi
es of L and T , however, one 
an observe travelling wave solutions. ForL = 150 and keeping all other parameters �xed, we in
lude the plots of U"(x; tn) andV"(x; tn) for tn = 0; 400; : : : ; 4000; see Figure 3, where one 
an 
learly see the e�e
t of thedegenerate di�usion 
oeÆ
ient b(�; �). At suÆ
iently late times the established \spike" inV" 
an not spread out any further, sin
e U" is pra
ti
ally zero in this area. In areas wherethe nutrient supply is still suÆ
ient, however, the growth of the ba
teria 
olony 
ontinues,
reating two sharp fronts. Of 
ourse b(r; s) � r s is only \non-zero" in the small interfa
ialregion behind the sharp fronts in V", see also Figure 5. It is worth mentioning that theshape of the initial pro�les has a 
onsiderable e�e
t on the evolution. This is underlinedby the plots in Figure 4, where we 
hose B = 1, x0 = 5 and v0max = u0max = 0:71 in (4.5b)and kept the remaining parameters as before. Again one 
an observe the impa
t of the25
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V(x,t)Figure 3: U"(x; tn) and V"(x; tn) for tn = 0; 400; : : : ; 4000.double degenera
y of b(�; �). For the bene�t of the reader we also in
lude plots of thedi�usion 
oeÆ
ient b(r; s). As mentioned before it is e�e
tive in a very small region only;as 
an be seen in Figure 5, where it is plotted twi
e with di�erent s
ales for the verti
alaxis. Note that the speed of the sharp V" fronts de
reases as the di�usion 
oeÆ
ientde
reases.
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t of di�erent di�usion 
oeÆ
ients b(�; �). Firstly,we performed an experiment for the degenerate 
ase b(r; s) := r, see Figure 6, whilekeeping the other parameters �xed throughout: L = 150, and B = 1, x0 = 5, v0max =26
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V(x,t)Figure 7: U"(x; tn) and V"(x; tn) for tn = 0; 50; : : : ; 300 with b(r; s) := s.u0max = 0:71 in (4.5b). In the se
ond experiment we 
hose b(r; s) := s, see Figure 7.Finally, we performed an experiment for the non-degenerate 
ase b(r; s) := 1, see Figure 8.Note that the \spike" in V" 
ontinues to spread out in the last two 
ases. Moreover, sharpfronts in V" 
an only be observed for the 
ases where b(r; s) is degenerate in s, whi
h is tobe expe
ted as (1.1b) is then similar to a porous medium equation with a rea
tion term;see Remark 3.2. For all four di�usion 
oeÆ
ients the solutions eventually rea
h a statethat is (almost) stable with respe
t to time. In the �rst two 
ases the solutions remain
onstant due to the type of the degenera
y of b(�; �) and the fa
t that U"(x; t) � 0 fort suÆ
iently large. In the last two 
ases V" keeps spreading very slowly. We give thesolutions at T = 10000 for all 
onsidered di�usion 
oeÆ
ients in Figure 9.
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U(x,T) V(x,T)Figure 9: The solutions for the four di�erent di�usion 
oeÆ
ients at T = 10000.4.2 Numeri
al Results for d = 2Finally, we present numeri
al experiments in two spa
e dimensions with 
 = (�L; L) �(�L; L). We took a uniform mesh of squares of length h = 2L=[(J ) 12 � 1℄, ea
h of whi
hwas divided into two triangles by its north east diagonal.As for d = 1 we performed experiments for the initial pro�les in (4.5b). In parti
ularwe 
hose B = 1, x0 = 5, v0max = 0:71, u0max = 0:35 and L = 50, T = 1200, 
 = � = � = 1,�n � � = 5:12 � 10�2 h, " = 5:12 � 10�5 h, where J = (27 + 1)2, for the remainingparameters. As 
an be seen from the 
ontour plot of V" in Figure 10, the double degenera
yof the di�usion 
oeÆ
ient b(�; �) leads to a �ngering e�e
t. This front instability 
onformswith numeri
al results reported in Kawasaki et al. (1997) and Golding et al. (1998). Inorder to validate these last results we performed experiments with the same parameters,but with �ner mesh sizes h. In parti
ular we 
hose J = (2k + 1)2 (k = 8; 9). One 
anobserve from the plots in Figure 11 that the �ner the mesh, the less the solution V"deviates from the radial symmetry of the initial pro�le v0. Hen
e the �ngering e�e
tin Figure 10 is due to mesh e�e
ts. In Figure 12 we plot the regions where b(r; s) is\non-zero" for J = (2k + 1)2 (k = 7; 9) at T = 1200. Note that the maximum value isapproximately 1:6� 10�3 at this time and hen
e that the solutions in Figures 10 and 11are 
lose to steady states.Furthermore we again 
ompared the behaviour of the solutions for di�erent di�usion
oeÆ
ients b(�; �). It turned out that only the 
ase b(r; s) := � r s produ
es \interesting"results as in Figure 10, where � = 1. Here we present experiments for the two degenerate
ases b(r; s) := r and b(r; s) := s for the 
hoi
e of J = (27+1)2. As the solutions advan
e28
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Figure 10: Contour plots of U"(x; 1200) and V"(x; 1200) for J = (27 + 1)2.
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Figure 11: Contour plots of V"(x; 1200) for J = (2k + 1)2 (k = 8; 9).
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Figure 12: Contour plots of b(U"(x; 1200); V"(x; 1200)) for J = (2k + 1)2 (k = 7; 9).29



with very di�erent speeds 
ompared to the double degenera
y 
ase, we had to adjust thetime s
ales a

ordingly. The results for the same initial data and parameters as beforefor b(r; s) := r and b(r; s) := s at T = 160 
an be seen in Figure 13. Note that V" hasrea
hed a steady state for b(r; s) := r at this time. We did not in
lude a �gure for the
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Figure 13: Contour plots of V"(x; 160) for b(r; s) := r and b(r; s) := s, respe
tively, withJ = (27 + 1)2.non-degenerate 
ase b(r; s) := 1, as the 
ontours look very similar to those in the plot onthe right-hand side of Figure 13.Finally, we performed experiments where the initial data v0 is not radially symmetri
.Using polar 
oordinates, (�; �), we 
hose an initial pro�lev0pert(�; �) � v0R(� [1 + Æ1 
os(3�) + Æ2 
os(5�)℄) ; (4.6)where v0R is given by (4.5b), and Æ1 := 0:05, Æ2 := 0:1 are small perturbations to theradial symmetry of v0. Keeping all other parameters as before, with v0 repla
ed by (4.6),we plot the solutions for b(r; s) := r s at T = 1000 for J = (2k + 1)2 (k = 7; 8; 9), seeFigures 14 and 15. The regions where the di�usion 
oeÆ
ient is e�e
tive at T = 1000 isplotted in Figure 16. Observe that the maximum value is approximately 2:0 � 10�3 atthis time and hen
e that the solutions in Figures 14 and 15 are 
lose to steady states. Forthis doubly degenerate di�usion we see that a small perturbation in the initial data leadsto a signi�
ant 
hange in the evolution.On
e again one observes very di�erent behaviour for the di�usion 
oeÆ
ients b(r; s) :=r and b(r; s) := s; see Figure 17. In the former 
ase the e�e
t of the perturbation to theinitial data is \frozen in" about the origin as U" approa
hes zero there in a short periodof time, whereas the front is smeared; similarly to the 
ase d = 1, see Figures 6 and 9.In the latter 
ase the perturbation of the initial data has negligible e�e
t as the plots onthe right-hand sides of Figures 13 and 17 are pra
ti
ally identi
al, as to be expe
ted; seeFigures 7 and 9 for d = 1.
30
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Figure 14: Contour plots of U"(x; 1000) and V"(x; 1000) for J = (27 + 1)2.
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Figure 15: Contour plots of V"(x; 1000) for J = (2k + 1)2 (k = 8; 9).
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Figure 16: Contour plot of b(U"(x; 1000); V"(x; 1000)) for J = (27 + 1)2.31
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Figure 17: Contour plots of V"(x; 160) for b(r; s) := r and b(r; s) := s, respe
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